[1]F.-M. Wanlass, “Low stand-by power complementary field effect circuitry,” U.S. Patent 3356858, Dec. 5, 1967
[2]G. Mautry, J. Trager, “Investigation of self-heating in VLSI and ULSI MOSFETs,” IEEE International Conference on Microelectronic Test Structures, pp. 221-226, Mar. 1990.
[3]S.-G. Lee, “A review of self-heating effects on bipolar circuits,” Southcon/94. Conference Record, pp. 138-142, Mar. 1994.
[4]財團法人國家實驗研究院國家晶片系統設計中心, “對外服務收費方式與說明” https://www.cic.org.tw/soc/pdf/service_free.pdf
[5]方煒,2018,具成本效率之全數位CMOS時間與溫度至數位雙功能轉換器, 國立高雄科技大學,碩士論文。[6]Y.-J. An, et al., “An Energy Efficient Time-Domain Temperature Sensor for Low-Power On-Chip Thermal Management,” IEEE J. Sensors, vol. 14, no. 1, Jan. 2014.
[7]Bakker, et al., “High accuracy CMOS smart temperature sensors,” Kluwer Academic Publishers, 2000
[8]陳瑞和, “感測器,” 全華圖書, Jan. 1993
[9]P. Chen et al., “A Time-to-Digital-Converter-Based CMOS Smart Temperature Sensor,” IEEE J. Solid-State Circuits, vol. 40, no. 8, pp. 1642-8, Aug. 2005.
[10]A.-L. Aita et al., “A CMOS Smart Temperature Sensor with a Batch-Calibrated Inaccuracy of ±0.25°C (3σ) from -70°C to 130°C,” IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 342-343, Feb. 2009.
[11]K.-C. Liu, “A High-Resolution CMOS Time-to-Digital Converter Based on Pulse Shrinking and Pulse Stretching,” NKFUST, Electronic Engineering and Computer Science, Master’s Thesis, Jun. 2013.
[12]H.-W. Chen, “Design and Realization of Low Cost CMOS Smart Temperature Sensors.” NKFUST, Electronic Engineering and Computer Science, Master’s Thesis, Jun. 2014.
[13]F. Sebastiano et al., “A 1.2 V 10 W NPN-based temperature sensor in 65 nm CMOS with an inaccuracy of 0.2 C (3) from -70 C to 125 C,” IEEE ISSCC Dig., Feb. 2010, pp. 312–313.
[14]K. Sour et al., “A CMOS temperature sensor with an energy-efficient zoom ADC and an inaccuracy of 0.25 C (3) from 40 to 125 C” IEEE ISSCC Dig., Feb. 2010, pp. 310–311.
[15]P. Chen et al., “A fully digital time-domain smart temperature sensor realized with 140 FPGA logic elements,” IEEE Trans. Circuits Syst. I, vol. 54, no. 12, pp. 2661–2668, Dec. 2007.
[16]Y.-S. Lin et al., “An ultra low power 1 V, 220 nW temperature sensor for passive wireless applications,” IEEE CICC Dig., Sep. 2008, pp. 507–510.
[17]M.-K. Law et al., “A 405-nW CMOS temperature sensor based on linear MOS operation,” IEEE Trans. Circuits Syst. II, vol. 56, no. 12, pp. 891–895, Dec. 2009.
[18]C.-C. Chen et al., “Area-efficient all-digital pulse-shrinking smart temperature sensor with improved accuracy and resolution” Rev. Sci. Instrum. 89, 125002. 2018
[19]C.-C. Chen et al., “All-Digital CMOS Time-to-Digital Converter With Temperature-Measuring Capability” IEEE Transactions on very large scale integration (VLSI) systems, vol. 28, no. 9, Sep. 2020
[20]張凱翔,2019,具內建偏移誤差消除之CMOS脈衝縮減式時間至數位轉換器,國立高雄科技大學,碩士論文。[21]G.C. M. Meijer, et al., “Temperature sensor and voltage reference implemented in CMOS technology,” IEEE J. Sensors, vol.1, no. 3, pp. 225-235, Oct. 2001.
[22]C. Poirier, et al., “Power and Temperature control on a 90nm Itanium Family Processor” IEEE J. Solid-State Circuits, vol. 41, no. 1, pp. 229–237 Jan. 2006.
[23]M. Sasaki, et al., “A Temperature Sensor With an Inaccuracy of -1/+0.8°C Using 90-nm 1-V CMOS for Online Thermal Monitoring of VLSI Circuits,” IEEE Transaction on Semiconductor Manufacturing, vol. 21, no. 2, May. 2008.
[24]J. Yin, et al., “A System-on-Chip EPC Gen-2 Passive UHF RFID Tag with Embedded Temperature Sensor,” IEEE ISSCC Dig., pp. 308-309, Feb. 2010.
[25]C.-C. Chung et al., “An Auto calibrated All-Digital Temperature Sensor for On-Chip Thermal Monitoring,” IEEE Trans. Circuits Syst. II, vol. 58, no. 2, pp. 105–109, Feb. 2011.
[26]K. Woo et al., “Time-Domain CMOS Temperature Sensors With Dual Delay-Locked Loops for Microprocessor Thermal Monitoring,” IEEE Transaction on VLSI, vol. 20, no. 9, pp. 1590–1601, Sept. 2012.
[27]C.-C. Chen, et al., “C All-digital CMOS MOS-capacitor-based pulse-shrinking mechanism suitable for time-to-digital converters,” Rev. Sci. Instrum., vol. 86, no. 12, Dec. 2015.
[28]C.-C. Chen, et al., “All-Digital Cost-Efficient CMOS Digital-to-Time Converter Using Binary-Weighted Pulse Expansion,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 28, no. 4, pp. 1094-1098, April 2020.
[29]C.-C. Chen, et al., “All-Digital Pulse-Shrinking Time-to-Digital Converter with Improved Dynamic Range,” Review of Scientific Instruments, vol. 87, no. 4, pp. 046104(1-3), Apr. 2016.
[30]R. Szplet, et al., “An FPGA-Integrated Time-to-Digital Converter Based on Two-Stage Pulse Shrinking,” IEEE Trans. Instrum. Meas., vol. 59, no. 6, pp. 1663-1670, June. 2010.
[31]朱哲勳,2017,基於脈衝擴增之全數位CMOS數位至時間轉換器,國立高雄科技大學,碩士論文。[32]C. K. Kim, et al., “CMOS Temperature Sensor with Ring Oscillator for Mobile DRAM Self-refresh Control,” IEEE International Symposium on Circuits and Systems, pp. 3094-3097, May. 2008.
[33]T. Anand, et al., “A VCO Based Highly Digital Temperature Sensor With 0.034 °C/mV Supply Sensitivity,” IEEE Journal of Solid-State Circuits, vol. 51, no. 11, pp. 2651-2663, Nov. 2016.
[34]C.-C. Chen, et al., “CMOS time-to-digital converter based on a pulse-mixing scheme,” Rev. Sci. Instrum., vol. 85, no. 11, pp. 114702(1–9), Nov. 2014.
[35]R. Quan, et al., “A 4600 μm2 1.5 °C (3σ) 0.9 kS/s thermal-diffusivity temperature sensor with VCO-based readout,” in IEEE ISSCC Dig. Tech. Papers, pp. 1–3, Feb. 2015.
[36] J. S. Shor and K. Luria, “Miniaturized BJT-based thermal sensor for microprocessors in 32- and 22-nm technologies,” IEEE J. Solid-State Circuits, vol. 48, no. 11, pp. 2860–2867, Nov. 2013.