[1]Khoshniat, H.. H2S: the silent killer. Occupational health & safety (Waco, Tex.), 2008, 77(5), 55-55.
[2]Li, Y., Hsu, P. C., & Chen, S. M. Multi-functionalized biosensor at WO3–TiO2 modified electrode for photoelectrocatalysis of norepinephrine and riboflavin. Sensors and Actuators B: Chemical, 2012, 174, 427-435.
[3]Bilal, S., Hassan, M. M., ur Rehman, M. F., Nasir, M., Sami, A. J., & Hayat, A. An insect acetylcholinesterase biosensor utilizing WO3/g-C3N4 nanocomposite modified pencil graphite electrode for phosmet detection in stored grains. Food Chemistry, 2021, 346, 128894.
[4]Liu, H., Duan, C., Yang, C., Chen, X., Shen, W., & Zhu, Z. A novel nitrite biosensor based on the direct electron transfer hemoglobin immobilized in the WO3 nanowires with high length–diameter ratio. Materials Science and Engineering: C, 2015, 53, 43-49.
[5]Zhang, B., Wang, H., Xi, J., Zhao, F., & Zeng, B. In situ formation of inorganic/organic heterojunction photocatalyst of WO3/Au/polydopamine for immunoassay of human epididymal protein 4. Electrochimica Acta, 2020, 331, 135350.
[6]Dinesh, A., Anantha, M. S., Santosh, M. S., Priya, M. G., Venkatesh, K., Kumar, K. S. Y., Raghu, M. S., & Muralidhara, H. B. Improved performance of iron-based redox flow batteries using WO3 nanoparticles decorated graphite felt electrode. Ceramics International, 2021, 47(7), 10250-10260.
[7]Sun, C., Negro, E., Vezzù, K., Pagot, G., Cavinato, G., Nale, A., Bang, Y. H., & Di Noto, V. Hybrid inorganic-organic proton-conducting membranes based on SPEEK doped with WO3 nanoparticles for application in vanadium redox flow batteries. Electrochimica Acta, 2019, 309, 311-325.
[8]Hosseini, M. G., Mousavihashemi, S., Murcia-López, S., Flox, C., Andreu, T., & Morante, J. R. High-power positive electrode based on synergistic effect of N-and WO3-decorated carbon felt for vanadium redox flow batteries. Carbon, 2018, 136, 444-453.
[9]Ramesh, K., & Gnanavel, B. Fabrication and characterization of RGO/WO3 nanocomposites based working electrode for dye-sensitized solar cells (DSSCs). 2021, 47, 1967-1973.
[10]Patil, S. S., Mane, R. M., Khot, K. V., Mali, S. S., Hong, C. K., & Bhosale, P. N. Surfactant assisted approach to development of efficient WO3 photoanode for natural dye sensitized solar cell. Solar Energy, 2021, 220, 371-383.
[11]Biswas, R., & Chatterjee, S. Effect of surface modification via sol-gel spin coating of ZnO nanoparticles on the performance of WO3 photoanode based dye sensitized solar cells. Optik, 2020, 212, 164142.
[12]Mohan, L., Avani, A. V., Kathirvel, P., Marnadu, R., Packiaraj, R., Joshua, J. R., Nallamuthu, N., Shikir, M., & Saravanakumar, S. Investigation on structural, morphological and electrochemical properties of co-precipitation synthesis of Mn doped WO3 nanoparticles for supercapacitor applications. Journal of Alloys and Compounds, 2021, 882, 160670.
[13]Lokhande, V. C., Hussain, T., Shelke, A. R., Lokhande, A. C., & Ji, T. Substitutional doping of WO3 for Ca-ion based supercapacitor. Chemical Engineering Journal, 2021, 424, 130557.
[14]Kariper, İ. A., Tezel, F. M., & Gökkuş, Ö. M. Ü. R. Synthesize of WO3 thin film supercapacitor and its characterization. Physics Letters A, 2021, 388, 127059.
[15]Dutta, V., Sharma, S., Raizada, P., Thakur, V. K., Khan, A. A. P., Saini, V., Asiri, A. M., & Singh, P. An Overview on WO3 based photocatalyst for environmental remediation. Journal of Environmental Chemical Engineering, 2021, 9, 105018.
[16]Li, P., Guo, J., Ji, X., Xiong, Y., Lai, Q., Yao, S., Zhu, Y., Zhang, Y., & Xiao, P. Construction of direct Z-scheme photocatalyst by the interfacial interaction of WO3 and SiC to enhance the redox activity of electrons and holes. Chemosphere, 2021, 282, 130866.
[17]Palanisamy, G., Bhuvaneswari, K., Bharathi, G., Pazhanivel, T., Grace, A. N., & Pasha, S. K. Construction of magnetically recoverable ZnS–WO3–CoFe2O4 nanohybrid enriched photocatalyst for the degradation of MB dye under visible light irradiation. Chemosphere, 2021, 273, 129687.
[18]Kang, X., Lin, N., He, Y., Zhang, Q., Zhang, M., Yan, Y., & Liu, Y. Improvement of microstructure, mechanical properties and cutting performance of Ti (C, N)-based cermets by ultrafine La2O3 additions. 2021, 47, 19934-19944.
[19]Qiu, B., Duan, X., Zhang, Z., Yan, M., Cai, D., He, P., Chen, L., Yang, Z., Jia, D., & Zhou, Y. Microstructure and room/elevated-temperature mechanical properties of hot-pressed h-BN composite ceramics with La2O3-Al2O3-SiO2 addition. Journal of the European Ceramic Society, 2020, 40(6), 2260-2267.
[20]Yang, J. J., Gang, C. H. E. N., Zheng, C. H. E. N., Mu, X. D., Ying, Y. U., Zhang, L., Ll, X. Y., Qu, X. H., & Qin, M. L. Effects of doping route on microstructure and mechanical properties of W− 1.0 wt.% La2O3 alloys. Transactions of Nonferrous Metals Society of China, 2020, 30(12), 3296-3306.
[21]Chen, Z., Yang, J., Zhang, L., Jia, B., Qu, X., & Qin, M. Effect of La2O3 content on the densification, microstructure and mechanical property of W-La2O3 alloy via pressureless sintering. Materials Characterization, 2021, 175, 111092.
[22]Al-Fatesh, A. S., Kasim, S. O., Ibrahim, A. A., Al-Awadi, A. S., Abasaeed, A. E., Fakeeha, A. H., & Awadallah, A. E. Catalytic methane decomposition over ZrO2 supported iron catalysts: Effect of WO3 and La2O3 addition on catalytic activity and stability. Renewable Energy, 2020, 155, 969-978.
[23]Sankaran, A., Kumaraguru, K., Balraj, B., Sridevi, A., & Magesh, R. Investigation on catalytic activity of CuO/La2O3, CuO/Gd2O3 and CuO/La2O3/Gd2O3 nanocatalysts prepared via novel two step approach. Materials Science and Engineering: B, 2021, 263, 114836.
[24]Sridevi, A., Ramji, B. R., Venkatesan, G. P., Sugumaran, V., & Selvakumar, P. A facile synthesis of TiO2/BiOCl and TiO2/BiOCl/La2O3 heterostructure photocatalyst for enhanced charge separation efficiency with improved UV-light catalytic activity towards Rhodamine B and Reactive Yellow 86. Inorganic Chemistry Communications, 2021, 130, 108715.
[25]Yuan, G., Jin, H., Geng, M., Liu, X., & Bakenov, Z. Hybrids of La2O3 nanoplates anchored in three-dimensional carbon nanotubes microspheres as efficient sulfur-hosts for highperformance lithium/sulfur batteries. Materials Letters, 2020, 270, 127690.
[26]Yao, S., Wang, Y., Liang, Y., Yu, H., Majeed, A., Shen, X., Li, T., & Qin, S. Modified polysulfides conversion catalysis and confinement by employing La2O3 nanorods in high performance lithium-sulfur batteries. Ceramics International. 2021, 47, 27012-27021.
[27]Zhang, X., Chen, M., Zhang, Q., Liu, J., & Wu, Y. New insights into synergistic effects of La2O3 and nitrogen doped carbon for improved redox kinetics in lithium-sulfur batteries: a computational study. Applied Surface Science, 2021, 563, 150172.
[28]Abul-Magd, A. A., Abu-Khadra, A. S., & Abdel-Ghany, A. M. Influence of La2O3 on the structural, mechanical and optical features of cobalt doped heavy metal borate glasses. Ceramics International. 2021, 47, 19886-19894.
[29]Zhang, X., Yang, W., Zhang, J., Li, J., Jiang, L., & Qi, X. High hardnesses of Tm3+-doped La2O3-Al2O3 luminescent glasses fabricated by containerless solidification. Journal of Non-Crystalline Solids, 2019, 525, 119599.
[30]Xie, J., Zhang, M., Guo, R., Shi, Y., Liu, X., Pan, X., Chen, K., & Deng, W. Investigation of optical and thermal properties in Er3+-doped Ga2O3-La2O3-Ta2O5 glasses fabricated by containerless solidification. Journal of Alloys and Compounds, 2021, 872, 159651.
[31]Vinh, N. T., Van Dang, T., Hang, B. T., Le, A. T., Tuan, N. T., & Van Quy, N. Effect of ferric ion [Fe3+] and [Fe2+] on SO2 adsorption ability of γ-Fe2O3 nanoparticles for mass-type gas sensors. Sensors and Actuators A: Physical, 2021, 331, 112981.
[32]Abe, H., Kimura, Y., Ma, T., Tadaki, D., Hirano-Iwata, A., & Niwano, M. Response characteristics of a highly sensitive gas sensor using a titanium oxide nanotube film decorated with platinum nanoparticles. Sensors and Actuators B: Chemical, 2020, 321, 128525.
[33]Lu, S., Zhang, Y., Liu, J., Li, H. Y., Hu, Z., Luo, X., Gao, N., Zhang, B., Jiang, J., Zhong, A., Luo, J., & Liu, H. Sensitive H2 gas sensors based on SnO2 nanowires. Sensors and Actuators B: Chemical, 2021, 345, 130334.
[34]Barbosa, M. S., Suman, P. H., Kim, J. J., Tuller, H. L., & Orlandi, M. O. Investigation of electronic and chemical sensitization effects promoted by Pt and Pd nanoparticles on single-crystalline SnO nanobelt-based gas sensors. Sensors and Actuators B: Chemical, 2019, 301, 127055.
[35]Van Tong, P., Minh, L. H., Van Duy, N., & Hung, C. M. Porous In2O3 nanorods fabricated by hydrothermal method for an effective CO gas sensor. Materials Research Bulletin, 2021, 137, 111179.
[36]Yang, J., Han, W., Ma, J., Wang, C., Shimanoe, K., Zhang, S., Sun, Y., Cheng, P., Wang, Y., Zhang, H., & Lu, G. Sn doping effect on NiO hollow nanofibers based gas sensors about the humidity dependence for triethylamine detection. Sensors and Actuators B: Chemical, 2021, 340, 129971.
[37]Zeleny, J. The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at their surfaces. Physical Review, 1914, 3(2), 69.
[38]Taylor, G. I. Disintegration of water drops in an electric field. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1964, 280(1382), 383-397.
[39]Taylor, G. I., & McEwan, A. D. The stability of a horizontal fluid interface in a vertical electric field. Journal of Fluid Mechanics, 1965, 22(1), 1-15.
[40]Taylor, G. I. Studies in electrohydrodynamics. I. The circulation produced in a drop by an electric field. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1966, 291(1425), 159-166.
[41]Taylor, G. I. Electrically driven jets. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1969, 313(1515), 453-475.
[42]Melcher, J. R., & Taylor, G. I. Electrohydrodynamics: a review of the role of interfacial shear stresses. Annual review of fluid mechanics, 1969, 1(1), 111-146.
[43]Duong, V. T., Nguyen, C. T., Luong, H. B., Nguyen, D. C., & Nguyen, H. L. Ultralow-detection limit ammonia gas sensors at room temperature based on MWCNT/WO3 nanocomposite and effect of humidity. Solid State Sciences, 2021, 113, 106534.
[44]Kumaresan, M., Venkatachalam, M., Saroja, M., & Gowthaman, P. TiO2 nanofibers decorated with monodispersed WO3 heterostruture sensors for high gas sensing performance towards H2 gas. Inorganic Chemistry Communications, 2021, 129, 108663.
[45]Duong, V. T., Nguyen, C. T., Luong, H. B., Nguyen, D. C., & Nguyen, H. L. Ultralow-detection limit ammonia gas sensors at room temperature based on MWCNT/WO3 nanocomposite and effect of humidity. Solid State Sciences, 2021, 113, 106534.
[46]Khudadad, A. I., Yousif, A. A., & Abed, H. R. Effect of heat treatment on WO3 nanostructures based NO2 gas sensor low-cost device. Materials Chemistry and Physics, 2021, 269, 124731.
[47]Su, P. G., & Yu, J. H. Enhanced NO2 gas-sensing properties of Au-Ag bimetal decorated MWCNTs/WO3 composite sensor under UV-LED irradiation. Sensors and Actuators A: Physical, 2020, 303, 111718.
[48]Su, P. G., & Yu, J. H. Enhanced NO2 gas-sensing properties of Au-Ag bimetal decorated MWCNTs/WO3 composite sensor under UV-LED irradiation. Sensors and Actuators A: Physical, 2020, 303, 111718.
[49]Choi, J. Y., & Oh, T. S. CO sensitivity of La2O3-doped SnO2 thick film gas sensor. Thin Solid Films, 2013, 547, 230-234.
[50]Zhang, G., Zhang, S., Yang, L., Zou, Z., Zeng, D., & Xie, C. La2O3-sensitized SnO2 nanocrystalline porous film gas sensors and sensing mechanism toward formaldehyde. Sensors and Actuators B: Chemical, 2013, 188, 137-146.
[51]Tammanoon, N., Wisitsoraat, A., Phokharatkul, D., Tuantranont, A., Phanichphant, S., Yordsri, V., & Liewhiran, C. Highly sensitive acetone sensors based on flame-spray-made La2O3-doped SnO2 nanoparticulate thick films. Sensors and Actuators B: Chemical, 2018, 262, 245-262.
[52]Fukui, K., & Nishida, S. CO gas sensor based on Au–La2O3 added SnO2 ceramics with siliceous zeolite coat. Sensors and Actuators B: Chemical, 1997, 45(2), 101-106.
[53]吳佩岑. “二氧化鈦奈米管於濕度與氣體感測器之研究.” 國立高雄科技大學機械工程系碩士班, 高雄市, 2014[54]楊士弘. “金屬氧化物奈米結構應用於氣體感測器.” 國立高雄科技大學機械工程系碩士班, 高雄市, 2015[55]謝東翰. “摻雜銀與氧化石墨烯於二氧化鈦之奈米複合材料及其光催化探討.”國立高雄科技大學機械工程系碩士班, 高雄市, 2019[56]李宗璡. “ZnO與ZnO-CuO異質結構於氣體感測器應用研究.” 國立高雄科技大學機械工程系碩士班, 高雄市, 2019[57]薛宇焜. “氧化鋅-鈣鈦礦異質結構之特性與氣體感測應用.” 國立高雄科技大學機械工程系碩士班, 高雄市, 2020[58]國立成功大學貴重儀器檢測中心高解析穿透電子顯微鏡,高解析穿透電子顯微鏡照片(2009.12.29)。檢自https://researchoutput.ncku.edu.tw/zh/equipments/analytical-field-emission-scanning-electron-microscope(Aug. 7, 2021)
[59]國立成功大學貴重儀器檢測中心高溫二維X-ray 廣角繞射儀,高溫二維X-ray 廣角繞射儀照片。檢自https://researchoutput.ncku.edu.tw/zh/equipments/2d-x-ray-diffractometer(Aug. 7, 2021)。
[60]Cheung, K. W., Yu, J., & Ho, D. Temperature-dependent sensitivity in Pt/La2O3 nanobelt Schottky interface hydrogen sensors. Materials Research Bulletin, 2019, 110, 174-180.
[61]Poongodi, S., Kumar, P. S., Mangalaraj, D., Ponpandian, N., Meena, P., Masuda, Y., & Lee, C. Electrodeposition of WO3 nanostructured thin films for electrochromic and H2S gas sensor applications. Journal of Alloys and Compounds, 2017, 719, 71-81.
[62]Dong, C., Zhao, R., Yao, L., Ran, Y., Zhang, X., & Wang, Y. A review on WO3 based gas sensors: Morphology control and enhanced sensing properties. Journal of Alloys and Compounds, 2020, 820, 153194.
[63]Meng, F. N., Di, X. P., Dong, H. W., Zhang, Y., Zhu, C. L., Li, C., & Chen, Y. J. Ppb H2S gas sensing characteristics of Cu2O/CuO sub-microspheres at low-temperature. Sensors and Actuators B: Chemical, 2013, 182, 197-204.
[64]Yang, F., Zhu, J., Zou, X., Pang, X., Yang, R., Chen, S., Fang, Y., Shao, T., Luo, X., & Zhang, L. Three-dimensional TiO2/SiO2 composite aerogel films via atomic layer deposition with enhanced H2S gas sensing performance. Ceramics International, 2018, 44(1), 1078-1085.
[65]Hu, Q., Zhang, W., Wang, X., Wang, Q., Huang, B., Li, Y., Hua, X., Liu, G., Li, B., Zhou, J., Xie, E., & Zhang, Z. Binder-free CuO nanoneedle arrays based tube-type sensor for H2S gas sensing. Sensors and Actuators B: Chemical, 2021, 326, 128993.
[66]Balamurugan, C., Jeong, Y. J., & Lee, D. W. Enhanced H2S sensing performance of a p-type semiconducting PdO-NiO nanoscale heteromixture. Applied Surface Science, 2017, 420, 638-650.
[67]Qiao, X., Xu, Y., Yang, K., Ma, J., Li, C., Wang, H., & Jia, L. Mo doped BiVO4 gas sensor with high sensitivity and selectivity towards H2S. Chemical Engineering Journal, 2020, 395, 125144.
[68]Tong, X., Shen, W., Chen, X., & Corriou, J. P. A fast response and recovery H2S gas sensor based on free-standing TiO2 nanotube array films prepared by one-step anodization method. Ceramics International, 2017, 43(16), 14200-14209.