|
[1]Du. H., Qi. J., Lao. Y., Xiong, T., 2012, “Oil retaining capability and sliding friction behaviour of porous copper with elongated cylindrical pores” Journal of Materials Processing Technology, Vol. 212, pp. 1796-1801. [2]韓風麟., 賈成廠., 2004, “燒結金屬粉末冶金軸承-原理、設計、製造與應用” 化學工業出版社. [3]Mello. J. D. B. d., Binder. C., Klein, A. N., Binder. R., 2010, “Effect of Sintering Temperature on the Tribological Behavior of Plasma Assisted Debinded and Sintered MIM Self Lubricating Steels” Engineering Systems Design and Analysis, Vol. 8, pp. 373-380. [4]K. C. M.S., 1991, “Mechanical properties of sintered materials” Soviet Powder Metallurgy and Metal Ceramics, Vol. 30, pp. 257-261. [5]Campos. K. R., Kapsa. P., Binder. C., Klein. A. N., Mello. J. D. B. D., 2015, “Tribological evaluation of self-lubricating sintered steels” Wear, Vol. 332-333, pp. 932-940. [6]Boidi. G., Tertuliano. I. S., Lima. L. G. B. S., Profito. F. J., Machado. I. F., 2019, “Porosity Effect of Sintered Steel on the Frictional Performance of Conformal and Nonconformal Lubricated Contacts” Tribology Transactions, Vol. 62, pp. 1029-1040. [7]佳聯科技有限公司, 網頁官網. [8]Bram. M., Daudt. N. F. Balzer. H., 2022, “Porous Metals From Powder Metallurgy Techniques” Encyclopedia of Materials: Metals and Alloys, Vol. 3, pp. 427-437. [9]Dubrujeaud. B., Vardavoulias. M., Jeandin. M., 2004, “The role of porosity in the dry sliding wear of a sintered ferrous alloy” Wear, Vol. 174, pp. 155-161. [10]Chawla. N., Deng. X., 2005, “Microstructure and mechanical behavior of porous sintered steels”, Materials Science and Engineering: A, Vol. 390, pp. 98-112. [11]Dlapka. M., Danninger. H., Gierl. C., Lindqvist. B., 2010, “Defining the pores in PM components”, Metal Powder Report, Vol. 65. pp. 30-33. [12]Islam. M. A., Farhat. Z. N., 2011, “Effect of porosity on dry sliding wear of Al–Si alloys”, Tribology International, Vol. 44, pp. 498-504. [13]Kurgan. N., 2014, “Effect of porosity and density on the mechanical and microstructural properties of sintered 316L stainless steel implant materials”, Materials & Design, Vol. 55. pp. 235-241. [14]Li. X., Olofsson. U., 2017, “A study on friction and wear reduction due to porosity in powder metallurgic gear materials” , Tribology International, Vol. 110, pp. 86-95. [15]Chen. R., Zhang. Y., 2020, “Analysis on Tribological Performance and Leakage Characteristics of Porous Bearings” , IEEE Xplore. [16]Boidi. G., Profito. F. J., Kadiric, A., Machado, I, F., Dini, D., 2021, “The use of Powder Metallurgy for promoting friction reduction under sliding-rolling lubricated conditions”, Tribology International, Vol. 157, 106892. [17]Xu. X., Shu. X., Pei. Q., Qin. H., Guo. R., Wang. X., Wang. Q., 2022, “Effects of porosity on the tribological and mechanical properties of oil-impregnated polyimide”, Tribology International, Vol. 170 , 107502. [18]Kalin. M., Polajnar. M., 2013, “The correlation between the surface energy, the contact angle and the spreading parameter, and their relevance for the wetting behaviour of DLC with lubricating oils”, Tribology International, Vol. 66,pp. 225-233. [19]Wu. D., Wang. P., Wu. P., Yang. Q., Liu. F., Han. Y., Xu. F., Wang. L., 2015, “Determination of contact angle of droplet on convex and concave spherical surfaces”, Chemical Physics, Vol. 457,pp. 63-69. [20]Marques. M. A. C. D. S., Guimarey. M. J. G., Vicente. D. A., Amigo. A., Fernández. J., 2021, “Heat capacity, density, surface tension, and contact angle for polyalphaolefins and ester lubricants”, Thermochimica Acta, Vol. 703, 178994. [21]Polajnar. M., Thiebaut. B., Jarnias. F., Kalin. M., 2021, “Elasto-hydrodynamic friction changes on steel surfaces arising from the modified surface energy of the steel due to additive boundary films”, Tribology International, Vol. 164, 107203. [22]Qiu. J., Fu. Z., Liu. B., Liu. Y., Yan. J., Pan. D., Zhang. W., Baker. I., 2019, “Effects of niobium particles on the wear behavior of powder metallurgical γ-TiAl alloy in different environments”, Wear, Vol. 434-435. [23]Nedelcu. I., Piras. E., Rossi. A., Pasaribu. H. R., 2012, “XPS analysis on the influence of water on the evolution of zinc dialkyldithiophosphate–derived reaction layer in lubricated rolling contacts”, Surface and Interface Analysis, Vol. 44, Issue 8, pp.1219-1224. [24]Cen. H., Morina. A., Neville. A., Pasaribu. R., Nedelcu. I., 2012, “Effect of water on ZDDP anti-wear performance and related tribochemistry in lubricated steel/steel pure sliding contacts”, Tribology International, Vol. 56, pp. 47-57. [25]Gonzaga. F. B., Sobral. S. P., 2012, “A new method for determining the acid number of biodiesel based on coulometric titration”, Talanta, Vol. 97, pp. 199-203. [26]Park. L. K. E., Liu. J., Yiacoumi. S., Borole. A. P., Tsouris. C., 2017, “Contribution of acidic components to the total acid number (TAN) of bio-oil”, Fuel, Vol. 200, pp. 171-181. [27]Parsaeian. P., Ghanbarzadeh. A., Wilson. M., Eijk. M. C. P. V., Nedelcu. I., Dowson. D., Neville. A., Morina. A., 2016, “An experimental and analytical study of the effect of water and its tribochemistry on the tribocorrosive wear of boundary lubricated systems with ZDDP-containing oil”,Wear, Vol. 358-359, pp. 23-31. [28]Fitch. J. C., Jaggernauth. S., 2014, “Moisture – the second most destructive lubricant contaminate, and its effects on bearing life”, Noria Corporation. [29]Cantley. R. E., 2008, “The Effect of Water in Lubricating Oil on Bearing Fatigue Life”,Tribology Transactions, Vol. 20, pp. 244-248. [30]Schatzberg. P., Felsen. I. M., 1968, “Effects of water and oxygen during rolling contact lubrication”, Wear, Vol. 12, pp. 331-342. [31]Soltanahmad. S., Morina. A., Eijk. M. C. P. V., Nedelcu. I., Neville. A., 2017, “Tribochemical study of micropitting in tribocorrosive lubricated contacts: The influence of water and relative humidity”, Tribology International, Vol. 107, pp. 184-198. [32]Lancaster. J. K., 1990, “A review of the influence of environmental humidity and water on friction, lubrication and wear” Tribology International, Vol. 23.pp. 371-389. [33]Oh. H. K., Yeon. K. H., Kim. H. Y., 1999, “The influence of atmospheric humidity on the friction and wear of carbon steels” Journal of Materials Processing Technology, Vol. 95.pp. 10-16. [34]Basu. B., Vitchev. R. G., Vleugels. J., Celis. J. P., Biest. O.V. D., 2000, “Influence of humidity on the fretting wear of self-mated tetragonal zirconia ceramics” Acta Materialia, Vol. 48.pp. 2461-2471. [35]Parsaeian. P., Eijk. M. C. P. V., Nedelcu. I., Neville. A., Morina. A., 2017, “Study of the interfacial mechanism of ZDDP tribofilm in humid environment and its effect on tribochemical wear; Part I: Experimental” Tribology International, Vol. 169.pp. 135-143. [36]CHEN. L., QIAN. L., 2021, “Role of interfacial water in adhesion, friction, and wear—A critical review” Friction, Vol. 9, pp. 1-28. [37]Kornaev. A., Savin. L., Kornaeva. E., Fetisov. A., 2016, “Influence of the ultrafine oil additives on friction and vibration in journal bearings”, Tribology International, Vol. 101, pp. 131-140. [38]Liu. W., Ni. H., Wang. P., Chen. H., 2020, “Investigation on the tribological performance of micro-dimples textured surface combined with longitudinal or transverse vibration under hydrodynamic lubrication”, International Journal of Mechanical Sciences, Vol. 174, 105474. [39]Boubendir. S., Larbi. S.,Bennacer. R., 2011, “Numerical study of the thermo-hydrodynamic lubrication phenomena in porous journal bearings” Tribology International, Vol. 41, pp. 1-8. [40]Ramesh. A., Akram. W., Mishra. S. P., A. Cannon. A. H., Polycarpou. A. A., King. W. P., 2013, “Friction characteristics of microtextured surfaces under mixed and hydrodynamic lubrication” Tribology International, Vol. 57, pp. 170-176. [41]Boubendir. S., Larbi. S., Malki. M., Bennacer. R., 2019, “Hydrodynamic self-lubricating journal bearings analysis using Rabinowitsch fluid lubricant” Tribology International, Vol. 140, 105856. [42]Kerur. M. R., Nagaraju. T., Pradeep. M. S., 2019, “Performance Analysis of Porous Journal Bearing with Surface Roughness and Thermal Effects” JETIR, Vol. 6. pp. 11359-11374. [43]Chu. L. M., 2022, C. J. C. W., H. H. C., “The effects of couple stress lubricants and surface roughness on squeeze EHL motion between porous medium layer and elastic ball” Advances in Mechanical Engineering, Vol. 22(01). [44]Prost. J., Boidi. G., Varga. M., Vorlaufer. G., Eder. S. J., 2022, “Lifetime assessment of porous journal bearings using joint time-frequency analysis of real-time sensor data” Tribology International, Vol. 169, 107488.
|