[1] L. Vayssieres, “Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions” Adv. Mater., vol. 15, pp. 464-466, 2003.
[2] Q. Li, V. Kumar, Y. Li, H. Zhang, T. J. Marks, and R. P. H. Chang, “Fabrication of ZnO Nanorods and Nanotubes in Aqueous Solutions”,Chemistry of Materials,vol. 17, pp. 1001-1006, 2005.
[3] K. Govender, D. S. Boyle, P. B. Kenway and P. O’Brien, “Understanding the factors thatgovern the deposition and morphology of thin films of ZnO from aqueous solution” J. Mater. Chem., vol. 14, pp. 2575-2591, 2004.
[4] J. Lin,P. Fei,J. Song,X. Wang,C. Lao,R. Tumala,and Z. L. Wang, “Carrier density and schottky barrier on the performance of DC nanogenerator”,Nano Lett. vol. 8, pp. 328-332, 2008.
[5] Ul Haq, B., AlFaify, S., Alshahrani, T., Ahmed, R., Butt, F. K., Ur Rehman, S., & Tariq, Z., ” Devising square- and hexagonal-shaped monolayers of ZnO for nanoscale electronic and optoelectronic applications”, Solar Energy, vol 211, pp. 920-927, 2020.
[6] ForemanJ. V. , Li J. , Peng H.,Choi S. , Everitt H. O. , LiuJ., “Time-resolved investigation of bright visible wavelength luminescence from sulfur-doped ZnO nanowires and micropowders”, Nano Lett,vol. 6, pp. 1126-1130, 2006.
[7] AleksandraB. Djurišić Dr., Yu Hang Leung, “Optical properties of ZnO nanostructures”,Small, vol. 2, pp. 944-961 , 2006.
[8] Özgür, Ü. , Alivov, Y. I.; Liu, C. , Teke, A. , Reshchikov, M. A. , Doğan, S. , Avrutin. V. ,Cho, S. J. , Morkoç, H. , “A comprehensive review of ZnO materials and devices ”,Journal of Applied Physics,vol. 98, pp. 041301-1~041301-103, 2005.
[9] Mahmood M. A., Jan S., Shah I. A., Khan I, “Growth Parameters for Films of Hydrothermally Synthesized One-Dimensional Nanocrystals of Zinc Oxide”,International Journal of Photoenergy, vol. 2016, pp. 3153170-1~3153170-13, 2016.
[10] C.H. Lu, Y.C. Lai, R.B. Kale, “Influence of alkaline sources on the structural and morphological properties of hydrothermally derived zinc oxide powders”, Journal of Alloys and Compounds,vol. 477, pp. 523-528, 2009.
[11] P. D. Yang, H. Q. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J.Pham,R. He and H. J. Choi, “Controlled Growth of ZnO Nanowires and Their Optical Properties”,Advanced Functional Materials,vol. 12, pp. 323-331, 2002.
[12] T.M. Shang, J.H. Sun, Q.F. Zhou, M.Y. Guan, “Controlled synthesis of various morphologies of nanostructuredzinc oxide:flower, nanoplate, and urchin”, Crystal Research and Technology,vol. 42, pp. 1002-1006, 2007.
[13] L. Vayssieres, “Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions ”, Advanced Materials,vol. 15, pp. 464-466, 2003.
[14] X. Y. Kong, Y. Ding and Z. L. Wang, J. Phys. Chem. B, “Metal−Semiconductor Zn−ZnO Core−Shell Nanobelts and Nanotubes”,The Journal of Physical Chemistry B,vol. 108, pp. 570-574, 2004.
[15] Sadullah Öztürk, Necmettin Kılınç, Nevin Taşaltın, Zafer Ziya Öztürk, “Fabrication of ZnO nanowires and nanorods”, Physica E: Low-dimensional Systems and Nanostructures, vol. 44, pp. 1062-1065, 2012.
[16] K.Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, B. E. Gnade, J. Appl. Phys, “Mechanisms behind green photoluminescence in ZnO phosphor powders”, Journal of Applied Physics , vol. 79, pp. 7983-7990, 1996.
[17] A. Pivrikas, N. S. Sariciftci, G. Juska, R. Osterbacka, Prog. Photovolt, “A review of charge transport and recombinationin polymer/fullerene organic solar cells”, Organic Solar Cells, vol. 15, pp. 677-696, 2007.
[18] H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, D. M. Leeuw, “Two-dimensional charge transport in self-organized, high-mobility conjugated polymers”, Nature, vol. 401, pp. 685-688, 1999.
[19] Zheng, J. H., Song, J. L., Jiang, Q., & Lian, J. S., “Enhanced UV emission of Y-doped ZnO nanoparticles”, Applied Surface Science, vol. 258(18), pp. 6735-6738, 2012.
[20] Ming Gao, Jinghai Yang, Lili Yang, Yongjun Zhang, Jihui Lang, Huilian Liu, Hougang Fan, Yunfei Sun, Zhiqiang Zhang, Hang Song, “Enhancement of optical properties and donor-related emissions in Y-doped ZnO”, Superlattices and Microstructures, vol. 52(1), pp. 84-91, 2012.
[21] G. Turgut, S. Duman , E.F. Keskenler, “The influence of Y contribution on crystallographic, topographic and optical properties of ZnO: A heterojunction diode application”, Superlattices and Microstructures, vol. 86, pp. 363-371, 2015.
[22] D. R. Vij, N. Singh, “Luminescence and RelatedProperties of II-VI Semiconductors”, Nova Science Publishers, pp. 1-389, 1998.
[23] K.Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, B. E. Gnade, J. Appl. Phys, “Mechanisms behind green photoluminescence in ZnO phosphor powders”, vol. 79, pp. 7983-7990, 1996.
[24] B. Lin, Z. Fu, Y. Jia, J. “Green luminescent center in undoped zinc oxide films deposited on silicon substrates”, JApplied Physics Letters, vol. 79, pp. 943-945, 2001.
[25] 田民波,薄膜技術與薄膜材料,五南圖書出版有限公司,2007.
[26] 張秉書,”以非平衡磁控濺鍍法製備TiN硬質薄膜之研究”,臺灣師範大學工業教育學系研究所碩士論文, 2003。[27] Y. W. Wang, L. D. Zhang, G. Z. Wang, X. S. Peng, Z. Q. Chu, and C. H. Liang, J. “Catalytic growth of semiconducting zinc oxide nanowires and their photoluminescence properties”, Crystal Growth, vol. 234, pp. 171-175, 2001.
[28] Z. Zhou, “Tetrapod-shaped ZnO whisker and its composites”, Journal of Materials Processing Technology, vol. 89-90, pp. 415-418, 1999.
[29] Y. C. Wang, I. C. Leu and M. H. Hon, “Preparation of Nanosized ZnO Arrays by Electrophoretic Deposition”, Electrochemical and Solid-State Letters, vol. 5, pp. 53-55, 2002.
[30] M. J. Zheng, “Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique”, Chemical Physical Letters, vol. 363, pp. 123-128, 2002.
[31] L. Vayssieres, K. Keis, A. Hagfeldt, and S. E. Lindquist, “Three-Dimensional Array of Highly Oriented Crystalline ZnO Microtubes”, Chem. Mater, vol. 13, pp. 4395-4398, 2001.
[32] S. Yamabi, and H. Imai, “Fabrication of Rutile TiO2 Foils with High Specific Surface Area via Heterogeneous Nucleation in Aqueous Solutions”, Chemistry Letters, vol. 30, pp. 220-221, 2001.
[33] K. Tsukuma, T. Akiyama and H. Imai, “Liquid phase deposition film of tin oxide”, Non-Crystalline Solids, vol. 210, pp. 48-54, 1997
[34] M. Izaki , and O. Shinohara, “Room‐Temperature Deposition of Defect‐Free Magnetite Film by Chemical Reaction from an Aqueous Solution”, Advanced Materials, vol. 13, pp. 142-145, 2001.
[35] W. Park, II., C. H. Lee, J. H. Chae, D. H. Lee, and G. C. Yi, “Ultrafine ZnO nanowire electronic device arrays fabricated by selective metal-organic chemical vapor deposition”, Small, vol. 5, pp. 181-184, 2009.
[36] Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films”, Applied Physics Letters, vol. 72, pp. 3270-3272, 1998.
[37] Wang X., Zhou J., Song J., Liu J., Xu N., Wang Z. L., “Piezoelectric Field Effect Transistor and Nanoforce Sensor Based on a Single ZnO Nanowire”, Nano Letters, vol. 6, pp. 2768-2772, 2006.
[38] X. Pan, X. Zhao, “Ultra-High Sensitivity Zinc Oxide Nanocombs for On-Chip Room Temperature Carbon Monoxide Sensing”, Sensors, vol. 15, pp. 8919-8930. 2015.
[39] J.F. Chang, H.H. Kuo, I.C. Leu, M.H. Hon, “The effects of thickness and operation temperature on ZnO:Al thin film CO gas sensor”, Sensors and Actuators B: Chemical, vol. 84, pp. 258-264. 2002.
[40] T. Krishnakumar, R. Jayaprakash, N. Pinna, N. Donato, A. Bonavita, G. Micali, G. Neri, “CO gas sensing of ZnO nanostructures synthesized by an assisted microwave wet chemical route”, Sensors and Actuators B: Chemical, vol. 143, pp. 198-204. 2009.
[41] H. Gong, J.Q. Hu, J.H. Wang, C.H. Ong, F.R. Zhu, “Nano-crystalline Cu-doped ZnO thin film gas sensor for CO”, Sensors and Actuators B: Chemical, vol. 115, pp. 247-251, 2006.
[42] M. Hjiri, L. El Mir, S.G. Leonardi, A. Pistone , L. Mavilia, G. Neri, “Al-doped ZnO for highly sensitive CO gas sensors”, Sensors and Actuators B: Chemical, vol. 196, pp. 413-420, 2014.
[43] G.E. Buono-Core, A.H. Klahn, G. Cabello, L. Lillo, “Characterization of amorphous Pt/ZnO films grown on silicon(1 0 0) substrates by a photochemical metal organic deposition and their potential use as gas sensors”, Polyhedron, vol. 62, pp. 1-6, 2013.
[44] Nguyen Duc Khoang, Hoang Si Hong, Do Dang Trung, Nguyen Van Duy, Nguyen Duc Hoa, Dao Duc Thinh, Nguyen Van Hieu, “On-chip growth of wafer-scale planar-type ZnO nanorod sensors for effective detection of CO gas”, Sensors and Actuators B: Chemical, vol. 181, pp. 529-536, 2013.
[45] Sang Kyoo Lim, Sung-Ho Hwang, Soonhyun Kim, Hyunwoong Park, “Preparation of ZnO nanorods by microemulsion synthesis and their application as a CO gas sensor”, Sensors and Actuators B: Chemical, vol. 160, pp. 94-98, 2011.
[46] Ajeet Singh, Shakti Singh, B.C. Yadav, “Gigantic enhancement in response of heterostructured CeO2/CdS nanospheres based self-powered CO2 gas sensor: A comparative study”, Sensors and Actuators B: Chemical, vol. 377, pp. 133085-1~133085-9, 2023.
[47] Yuanjie Su, Shuo Chen, Bohao Liu, Haijun Lu, Xiaolan Luo, Chunxu Chen, Weixiong Li, Yin Long, Huiling Tai, Guangzhong Xie, Yadong Jiang, “Maxwell displacement current induced wireless self-powered gas sensor array”, Materials Today Physics, vol. 30, pp. 100951-1~100951-8, 2023.
[48] Hoang Si Hong, Nguyen Hai Ha, Dao Duc Thinh, Nguyen Hoang Nam, Nguyen Thanh Huong, Nguyen Thi Hue, Tran Vinh Hoang, “Enhanced sensitivity of self-powered NO2 gas sensor to sub-ppb level using triboelectric effect based on surface-modified PDMS and 3D-graphene/CNT network”, Nano Energy, vol. 87, pp. 106165-1~106165-8, 2021.
[49] Shasha He, Yingang Gui, Yunfeng Wang, Jiacheng Yang, “A self-powered β-Ni(OH)2/MXene based ethanol sensor driven by an enhanced triboelectric nanogenerator based on β-Ni(OH)2@PVDF at room temperature”, Nano Energy, vol. 107, pp. 108132-1~108132-11, 2023.
[50] Siwen Cui, Youbin Zheng, Tingting Zhang, Daoai Wang, Feng Zhou, Weimin Liu, “Self-powered ammonia nanosensor based on the integration of the gas sensor and triboelectric nanogenerator”, Nano Energy, vol. 49, pp. 31-39, 2018.
[51] A.S.M. Iftekhar Uddin, Gwiy-Sang Chung, “A self-powered active hydrogen gas sensor with fast response at room temperature based on triboelectric effect”, Sensors and Actuators B: Chemical, vol. 231, pp. 601-608, 2016.
[52] Wei Cheat Lee, Yuanxing Fang, John F.C. Turner, Jasbir S. Bedi, Christopher C. Perry, Heyong He, Rong Qian, Qiao Chen, “An Enhanced Gas Ionization Sensor from Y-Doped Vertically Aligned Conductive Zno Nanorods.” Sensors and Actuators B: Chemical, vol. 237, pp. 724-732, 2016.
[53] X.B. Li, Q.Q. Zhang, S.Y. Ma, G.X. Wan, F.M. Li, X.L. Xu, “Microstructure optimization and gas sensing improvement of ZnO spherical structure through Yttrium doping”, Sensors and Actuators B: Chemical, vol. 195, pp. 526-533, 2014.
[54] Sanjeev K. Sharma, Narinder Kaur, Byungho Lee, Changmin Kim, Sejoon Lee, Deuk Young Kim, “Diameter and density controlled growth of Yttrium functionalized zinc oxide (YZO) nanorod arrays by hydrothermal”, Current Applied Physics, vol. 15, pp. 82-88, 2015.
[55] Weiwei Guo, Tianmo Liu, Rong Sunb, Yong Chena, Wen Zeng, Zhongchang Wang, “Hollow, Porous, and Yttrium Functionalized Zno Nanospheres with Enhanced Gas-Sensing Performances”, Sensors and Actuators B: Chemical, vol. 178, pp. 53-62, 2013.
[56] Youngmin Lee, Narinder Kaur, Seoul Choi, Deuk Young Kim, Sejoon Lee, “A comprehensive study on structural, microstructural, and optical properties of YZnO nanorods prepared by seed morphology-controlled hydrothermal growth”, Applied Surface Science, vol. 556, pp. 149741-1~149741-9, 2021.
[57] Heo, S., Lee, Y., Sharma, S. K., Lee, S., & Kim, D. Y., “Mole-controlled growth of Y-doped ZnO nanostructures by hydrothermal method”, Current Applied Physics, vol. 14, pp. 1576-1581, 2014.