|
Ala, R., Kim, D. H., Shin, S. Y., Kim, C.& Park, S.-K., 2015, A 3D-grasp synthesis algorithm to grasp unknown objects based on graspable boundary and convex segments, Information Sciences, Vol. 295, pp. 91-106. Aleotti, J. & Caselli, S., 2012, A 3D shape segmentation approach for robot grasping by parts, Robotics and Autonomous Systems, Vol. 60, No. 3, pp. 358-366. Biederman, I. J. P. r., 1987, Recognition-by-components: a theory of human image understanding, Psychological review, Vol. 94, No. 2, pp. 115-147 . Chen, L., Huang, P. & Meng, Z., 2019, Convolutional multi-grasp detection using grasp path for RGBD images, Robotics and Autonomous Systems, Vol. 113, pp. 94-103. Condotta, I. C. F. S., Brown-Brandl, T. M., Pitla, S. K., Stinn, J. P.& Silva-Miranda, K. O., 2020, Evaluation of low-cost depth cameras for agricultural applications, Computers and Electronics in Agriculture, Vol. 173, pp. 1-15 Deng, T., Cai, J., Cham, T.-J. & Zheng, J., 2017, Multiple consumer-grade depth camera registration using everyday objects, Image and Vision Computing, Vol. 62, pp. 1-7. Di Angelo, L., Di Stefano, P. & Morabito, A. E., 2019, Fillets, rounds, grooves and sharp edges segmentation from 3D scanned surfaces, Computer-Aided Design, Vol. 110, pp. 78-91. Fotsing, C., Menadjou, N. & Bobda, C., 2021, Iterative closest point for accurate plane detection in unorganized point clouds, Automation in Construction, Vol. 125, pp.103610. Guo, N., Zhang, B., Zhou, J., Zhan, K. & Lai, S., 2020, Pose estimation and adaptable grasp configuration with point cloud registration and geometry understanding for fruit grasp planning, Computers and Electronics in Agriculture, Vol. 179, pp. 105818. Horváth, G. & Erdős, G., 2020, Object localization utilizing 3D point cloud clustering approach, Procedia CIRP, Vol. 93, pp. 508-513. Jerbić, B., Šuligoj, F., Švaco, M. & Šekoranja, B., 2015, Robot Assisted 3D Point Cloud Object Registration, Procedia Engineering, Vol. 100, pp. 847-852. Toquica, J. S., oliveira, patrícia S.,Souza, W. S. r., Motta, josé maurício S.t., & Borges, D. L., 2021, An analytical and a Deep Learning model for solving the inverse kinematic problem of an industrial parallel robot, Computers & Industrial Engineering, Vol. 151, pp. 106682. Li, D., Liu, N., Guo, Y., Wang, X. & Xu, J., 2019, 3D object recognition and pose estimation for random bin-picking using Partition Viewpoint Feature Histograms, Pattern Recognition Letters, Vol. 128, pp. 148-154. Mavrakis, N. & Stolkin, R., 2020, Estimation and exploitation of objects , inertial parameters in robotic grasping and manipulation: A survey, Robotics and Autonomous Systems, Vol. 124, pp. 103374. LiBretto, M., Qiu, Y., Kim, E., Pluckter, K., Yuk, N. & Ueda, J., 2020, Singularity-free solutions for inverse kinematics of degenerate mobile robots, Mechanism and Machine Theory, Vol. 153, pp. 103988. Lu, J., Du, F., Li, Y., Lei, Y., Zhang, T. & Zhang, G., 2021, A novel inverse kinematics algorithm using the Kepler oval for continuum robots, Applied Mathematical Modelling, Vol. 93, pp. 206-225. Qi, C. R., Su, H., Mo, K. & Guibas, L. J., 2017, Pointnet: Deep learning on point sets for 3d classification and segmentation, Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 652-660. Ramisa, A., Alenyà, G., Moreno-Noguer, F. & Torras, C., 2016, A 3D descriptor to detect task-oriented grasping points in clothing, Pattern Recognition, Vol. 60, pp. 936-948. Tao, W., Leu, M. C., & Yin, Z., 2020, Multi-modal recognition of worker activity for human-centered intelligent manufacturing, Engineering Applications of Artificial Intelligence, Vol. 95, pp. 103868. Lei, T., Rong, Y., Wang, H., Huang, Y. & Li, M., 2020, A review of vision-aided robotic welding, Computers in Industry, Vol. 123, pp. 103326. Wu, G., Li, B., Zhu, Q., Huang, M. & Guo, Y., 2020, Using color and 3D geometry features to segment fruit point cloud and improve fruit recognition accuracy, Computers and Electronics in Agriculture, Vol. 174, pp. 105475. Wang, W., Tian, W., Liao, W. & Li, B., 2021, Pose accuracy compensation of mobile industry robot with binocular vision measurement and deep belief network, Optik, Vol. 238, pp. 166716. Yang, J., Zhang, Q., Xian, K., Xiao, Y. & Cao, Z., 2017, Rotational contour signatures for both real-valued and binary feature representations of 3D local shape, Computer Vision and Image Understanding, Vol. 160, pp. 133-147. Zhong, R. Y., Xu, X., Klotz, E. & Newman, S. T., 2017, Intelligent Manufacturing in the Context of Industry 4.0: A Review. Engineering, Vol. 3, No. 5 , pp. 616-630.
|