|
[1]Amanov, A., Pyun, Y. S., & Sasaki, S. (2014). Effects of ultrasonic nanocrystalline surface modification (UNSM) technique on the tribological behavior of sintered Cu-based alloy. Tribology International, 72, 187-197. [2]Jiang, W. H., Pinkerton, F. E., & Atzmon, M. (2005). Mechanical behavior of shear bands and the effect of their relaxation in a rolled amorphous Al-based alloy. Acta Materialia, 53(12), 3469-3477. [3]Lim, Y. S., Kim, D. J., Hwang, S. S., Kim, H. P., & Kim, S. W. (2014). M23C6 precipitation behavior and grain boundary serration in Ni-based Alloy 690. Materials Characterization, 96, 28-39. [4]Zhang, Y., Zuo, T. T., Tang, Z., Gao, M. C., Dahmen, K. A., Liaw, P. K., & Lu, Z. P. (2014). Microstructures and properties of high-entropy alloys. Progress in Materials Science, 61, 1-93. [5]Rogal, Ł., Kalita, D., & Litynska-Dobrzynska, L. (2017). CoCrFeMnNi high entropy alloy matrix nanocomposite with addition of Al2O3. Intermetallics, 86, 104-109. [6]Yeh, J. W., Chen, S. K., Lin, S. J., Gan, J. Y., Chin, T. S., Shun, T. T., Tsau, C. H., & Chang, S. Y. (2004). Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced Engineering Materials, 6(5), 299-303. [7]Otto, F., Dlouhý, A., Somsen, C., Bei, H., Eggeler, G., & George, E. P. (2013). The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Materialia, 61(15), 5743-5755. [8]Ye, Y. F., Wang, Q., Lu, J., Liu, C. T., & Yang, Y. (2016). High-entropy alloy: challenges and prospects. Materials Today, 19(6), 349-362. [9]Jien-Wei, Y. E. H. (2006). Recent progress in high entropy alloys. Annales de Chimie - Science des Matériaux, 31(6), 633-648. [10]Yeh, J. W. (2013). Alloy design strategies and future trends in high-entropy alloys. Jom, 65(12), 1759-1771. [11]Liu, W. H., Wu, Y., He, J. Y., Nieh, T. G., & Lu, Z. P. (2013). Grain growth and the Hall–Petch relationship in a high-entropy FeCrNiCoMn alloy. Scripta Materialia, 68(7), 526-529. [12]Yeh, J. W., Chang, S. Y., Hong, Y. D., Chen, S. K., & Lin, S. J. (2007). Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements. Materials Chemistry and Physics, 103(1), 41-46. [13]Youssef, K. M., Zaddach, A. J., Niu, C., Irving, D. L., & Koch, C. C. (2015). A novel low-density, high-hardness, high-entropy alloy with close-packed single-phase nanocrystalline structures. Materials Research Letters, 3(2), 95-99. [14]Sun, L., & Cava, R. J. (2019). High-entropy alloy superconductors: Status, opportunities, and challenges. Physical Review Materials, 3(9), 090301. [15]Raza, A., Abdulahad, S., Kang, B., Ryu, H. J., & Hong, S. H. (2019). Corrosion resistance of weight reduced AlxCrFeMoV high entropy alloys. Applied Surface Science, 485, 368-374. [16]Qiao, J. W., Ma, S. G., Huang, E. W., Chuang, C. P., Liaw, P. K., & Zhang, Y. (2011). Microstructural characteristics and mechanical behaviors of AlCoCrFeNi high-entropy alloys at ambient and cryogenic temperatures. In Materials Science Forum (Vol. 688, pp. 419-425). Trans Tech Publications Ltd. [17]Guo, X., Gou, Y., Dong, Z., Yuan, S., Li, M., Du, W., & Kang, R. (2020). Study on subsurface layer of nano-cutting single crystal tungsten in different crystal orientations. Applied Surface Science, 526, 146608. [18]Wang, P., Ma, L., Cheng, X., & Li, X. (2021). Comparative effect of (1 1 1) and (1 1 0) crystallographic orientation on the passive behavior of low alloy steels in bicarbonate solution. Applied Surface Science, 561, 150066. [19]Wang, X., Zhou, W., Liu, P., Song, S., & Reddy, K. M. (2019). Atomic scale structural characterization of B2 phase precipitated along FCC twin boundary in a CoCrFeNiAl0. 3 high entropy alloy. Scripta Materialia, 162, 161-165. [20]Huang, C. C., Chiang, T. C., & Fang, T. H. (2015). Grain size effect on indentation of nanocrystalline copper. Applied Surface Science, 353, 494-498. [21]Ding, Q., Zhang, Y., Chen, X., Fu, X., Chen, D., Chen, S., Gu, L., Wei, F., Bei, H., Gao, Y., Wen, M., Li, J., Zhang, Z., Zhu, T., Ritchie, R. O., & Yu, Q. (2019). Tuning element distribution, structure and properties by composition in high-entropy alloys. Nature, 574, 223-227. [22]Zhang, K., & Fu, Z. (2012). Effects of annealing treatment on phase composition and microstructure of CoCrFeNiTiAlx high-entropy alloys. Intermetallics, 22, 24-32. [23]Alhafez, I. A., Ruestes, C. J., Bringa, E. M., & Urbassek, H. M. (2019). Nanoindentation into a high-entropy alloy-an atomistic study. Journal of Alloys and Compounds, 803, 618-624. [24]Avila, K. E., Küchemann, S., Alhafez, I. A., & Urbassek, H. M. (2019). Nanoscratching of metallic glasses-An atomistic study. Tribology International, 139, 1-11. [25]Li, J., Fang, Q., Liu, B., Liu, Y., & Liu, Y. (2016). Mechanical behaviors of AlCrFeCuNi high-entropy alloys under uniaxial tension via molecular dynamics simulation. RSC Advances, 6(80), 76409-76419. [26]Xu, Y., Wang, M., Zhu, F., Liu, X., Chen, Q., Hu, J., Lu, Z., Zheng, P., & Liu, Y. (2019). A molecular dynamic study of nano-grinding of a monocrystalline copper-silicon substrate. Applied Surface Science, 493, 933-947. [27]Muthupandi, G., Lim, K. R., Na, Y. S., Park, J., Lee, D., Kim, H., Park, S., & Choi, Y. S. (2017). Pile-up and sink-in nanoindentation behaviors in AlCoCrFeNi multi-phase high entropy alloy. Materials Science and Engineering: A, 696, 146-154. [28]Doan, D. Q., Fang, T. H., & Chen, T. H. (2020). Influences of grain size and temperature on tribological characteristics of CuAlNi alloys under nanoindentation and nanoscratch. International Journal of Mechanical Sciences, 185, 105865. [29]Gao, Y., & Urbassek, H. M. (2016). Scratching of nanocrystalline metals: A molecular dynamics study of Fe. Applied Surface Science, 389, 688-695. [30]Wang, Z., Li, J., Fang, Q., Liu, B., & Zhang, L. (2017). Investigation into nanoscratching mechanical response of AlCrCuFeNi high-entropy alloys using atomic simulations. Applied Surface Science, 416, 470-481. [31]Chou, S. Y., Krauss, P. R., & Renstrom, P. J. (1995). Imprint of sub‐25 nm vias and trenches in polymers. Applied Physics Letters, 67(21), 3114-3116. [32]Chou, S. Y., Krauss, P. R., & Renstrom, P. J. (1996). Imprint lithography with 25-nanometer resolution. Science, 272(5258), 85-87. [33]Sun, X., Zhuang, L., Zhang, W., & Chou, S. Y. (1998). Multilayer resist methods for nanoimprint lithography on nonflat surfaces. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 16(6), 3922-3925. [34]Schulz, H., Scheer, H. C., Hoffmann, T., Sotomayor Torres, C. M., Pfeiffer, K., Bleidiessel, G., ... & Heidari, B. (2000). New polymer materials for nanoimprinting. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 18(4), 1861-1865. [35]Liu, X., Chen, N., Gu, J. L., Yang, G. N., Mussler, G., & Yao, K. F. (2015). Die imprinting of MGs: a one-step approach for large-area metallic photonic crystals. Materials & Design, 87, 1018-1021. [36]Meng, B., Yuan, D., & Xu, S. (2019). Study on strain rate and heat effect on the removal mechanism of SiC during nano-scratching process by molecular dynamics simulation. International Journal of Mechanical Sciences, 151, 724-732. [37]Xie, L., Brault, P., Thomann, A. L., & Bauchire, J. M. (2013). AlCoCrCuFeNi high entropy alloy cluster growth and annealing on silicon: A classical molecular dynamics simulation study. Applied Surface Science, 285, 810-816. [38]Chang, H., Zhang, T. W., Ma, S. G., Zhao, D., Xiong, R. L., Wang, T., Li, Z. Q., & Wang, Z. H. (2021). Novel Si-added CrCoNi medium entropy alloys achieving the breakthrough of strength-ductility trade-off. Materials & Design, 197, 109202. [39]Song, L., Wang, L., Zhang, T., Lin, J., & Pyczak, F. (2020). Microstructure and phase transformations of ωo-Ti4Al3Nb based alloys after quenching and subsequent aging at intermediate temperatures. Journal of Alloys and Compounds, 821, 153387. [40]Zhao, L. L., Li, G. Y., Zhang, L. Q., Lin, J. P., Song, X. P., Ye, F., & Chen, G. L. (2010). Influence of Y addition on the long time oxidation behaviors of high Nb containing TiAl alloys at 900 C. Intermetallics, 18(8), 1586-1596. [41]Lu, K. (2010). The future of metals. Science, 328(5976), 319-320. [42]Jones, N. G., Izzo, R., Mignanelli, P. M., Christofidou, K. A., & Stone, H. J. (2016). Phase evolution in an Al0. 5CrFeCoNiCu high entropy alloy. Intermetallics, 71, 43-50. [43]Xu, Q., Guan, H. Q., Zhong, Z. H., Huang, S. S., & Zhao, J. J. (2021). Irradiation resistance mechanism of the CoCrFeMnNi equiatomic high-entropy alloy. Scientific Reports, 11(1), 1-8. [44]Guo, W., Su, J., Lu, W., Liebscher, C. H., Kirchlechner, C., Ikeda, Y., Körmann, F., Xuan, L., Yunfei X., & Dehm, G. (2020). Dislocation-induced breakthrough of strength and ductility trade-off in a non-equiatomic high-entropy alloy. Acta Materialia, 185, 45-54. [45]Senkov, O. N., Miller, J. D., Miracle, D. B., & Woodward, C. (2015). Accelerated exploration of multi-principal element alloys with solid solution phases. Nature Communications, 6(1), 1-10. [46]Cantor, B., Chang, I. T. H., Knight, P., & Vincent, A. J. B. (2004). Microstructural development in equiatomic multicomponent alloys. Materials Science and Engineering: A, 375, 213-218. [47]Senkov, O. N., Wilks, G. B., Scott, J. M., & Miracle, D. B. (2011). Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics, 19(5), 698-706. [48]Miao, J., Liang, H., Zhang, A., He, J., Meng, J., & Lu, Y. (2021). Tribological behavior of an AlCoCrFeNi2. 1 eutectic high entropy alloy sliding against different counterfaces. Tribology International, 153, 106599. [49]Liu, G., Liu, L., Liu, X., Wang, Z., Han, Z., Zhang, G., & Kostka, A. (2018). Microstructure and mechanical properties of Al0. 7CoCrFeNi high-entropy-alloy prepared by directional solidification. Intermetallics, 93, 93-100. [50]Gludovatz, B., Hohenwarter, A., Catoor, D., Chang, E. H., George, E. P., & Ritchie, R. O. (2014). A fracture-resistant high-entropy alloy for cryogenic applications. Science, 345(6201), 1153-1158. [51]Liu, W. H., He, J. Y., Huang, H. L., Wang, H., Lu, Z. P., & Liu, C. T. (2015). Effects of Nb additions on the microstructure and mechanical property of CoCrFeNi high-entropy alloys. Intermetallics, 60, 1-8. [52]Chen, M. R., Lin, S. J., Yeh, J. W., Chen, S. K., Huang, Y. S., & Tu, C. P. (2006). Microstructure and properties of Al0. 5CoCrCuFeNiTix (x= 0–2.0) high-entropy alloys. Materials Transactions, 47(5), 1395-1401. [53]Tong, C. J., Chen, Y. L., Yeh, J. W., Lin, S. J., Chen, S. K., Shun, T. T., Tsau, C. H., & Chang, S. Y. (2005). Microstructure characterization of Al x CoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metallurgical and Materials Transactions A, 36(4), 881-893. [54]Shun, T. T., & Du, Y. C. (2009). Microstructure and tensile behaviors of FCC Al0. 3CoCrFeNi high entropy alloy. Journal of Alloys and Compounds, 479(1-2), 157-160. [55]Saito, T., Furuta, T., Hwang, J. H., Kuramoto, S., Nishino, K., Suzuki, N., Chen, R., Yamada, A., Ito, K., Seno, Y., Nonaka, T., Ikehata, H., Nagasako, N., Iwamoto, C., Ikuhara, Y., & Sakuma, T. (2003). Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism. Science, 300(5618), 464-467. [56]Oses, C., Toher, C., & Curtarolo, S. (2020). High-entropy ceramics. Nature Reviews Materials, 5(4), 295-309. [57]Zhao, S. F., Yang, G. N., Ding, H. Y., & Yao, K. F. (2015). A quinary Ti–Zr–Hf–Be–Cu high entropy bulk metallic glass with a critical size of 12 mm. Intermetallics, 61, 47-50. [58]Guo, Y., & Liu, Q. (2018). MoFeCrTiWAlNb refractory high-entropy alloy coating fabricated by rectangular-spot laser cladding. Intermetallics, 102, 78-87. [59]Hsieh, K. C., Yu, C. F., Hsieh, W. T., Chiang, W. R., Ku, J. S., Lai, J. H., Tu, C. P., & Yang, C. C. (2009). The microstructure and phase equilibrium of new high performance high-entropy alloys. Journal of Alloys and Compounds, 483(1-2), 209-212. [60]Varalakshmi, S., Kamaraj, M., & Murty, B. S. (2010). Processing and properties of nanocrystalline CuNiCoZnAlTi high entropy alloys by mechanical alloying. Materials Science and Engineering: A, 527(4-5), 1027-1030. [61]Chou, H. P., Chang, Y. S., Chen, S. K., & Yeh, J. W. (2009). Microstructure, thermophysical and electrical properties in AlxCoCrFeNi (0≤ x≤ 2) high-entropy alloys. Materials Science and Engineering: B, 163(3), 184-189. [62]Kao, Y. F., Lee, T. D., Chen, S. K., & Chang, Y. S. (2010). Electrochemical passive properties of AlxCoCrFeNi (x= 0, 0.25, 0.50, 1.00) alloys in sulfuric acids. Corrosion Science, 52(3), 1026-1034. [63]Li, Z., Zhao, S., Ritchie, R. O., & Meyers, M. A. (2019). Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys. Progress in Materials Science, 102, 296-345. [64]Jo, Y. H., Doh, K. Y., Kim, D. G., Lee, K., Kim, D. W., Sung, H., Sohn, S. S., Lee, D., Kim, H. S., Lee, B. J., & Lee, S. (2019). Cryogenic-temperature fracture toughness analysis of non-equi-atomic V10Cr10Fe45Co20Ni15 high-entropy alloy. Journal of Alloys and Compounds, 809, 151864. [65]He, J. Y., Zhu, C., Zhou, D. Q., Liu, W. H., Nieh, T. G., & Lu, Z. P. (2014). Steady state flow of the FeCoNiCrMn high entropy alloy at elevated temperatures. Intermetallics, 55, 9-14. [66]Lin, Y., Yang, T., Lang, L., Shan, C., Deng, H., Hu, W., & Gao, F. (2020). Enhanced radiation tolerance of the Ni-Co-Cr-Fe high-entropy alloy as revealed from primary damage. Acta Materialia, 196, 133-143. [67]Wang, J., Wu, S., Fu, S., Liu, S., Yan, M., Lai, Q., Lan, S., Hahn. H., & Feng, T. (2020). Ultrahigh hardness with exceptional thermal stability of a nanocrystalline CoCrFeNiMn high-entropy alloy prepared by inert gas condensation. Scripta Materialia, 187, 335-339. [68]Nene, S. S., Liu, K., Frank, M., Mishra, R. S., Brennan, R. E., Cho, K. C., Li, Z., & Raabe, D. (2017). Enhanced strength and ductility in a friction stir processing engineered dual phase high entropy alloy. Scientific Reports, 7, 16167. [69]Song, M., Zhou, R., Gu, J., Wang, Z., Ni, S., & Liu, Y. (2020). Nitrogen induced heterogeneous structures overcome strength-ductility trade-off in an additively manufactured high-entropy alloy. Applied Materials Today, 18, 100498. [70]Kumar, N., Ying, Q., Nie, X., Mishra, R. S., Tang, Z., Liaw, P. K., Brennan, R.E., Doherty, K.J., & Cho, K. C. (2015). High strain-rate compressive deformation behavior of the Al0. 1CrFeCoNi high entropy alloy. Materials & Design, 86, 598-602. [71]Wang, W. R., Wang, W. L., Wang, S. C., Tsai, Y. C., Lai, C. H., & Yeh, J. W. (2012). Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys. Intermetallics, 26, 44-51. [72]Ma, S. G., Zhang, S. F., Gao, M. C., Liaw, P. K., & Zhang, Y. (2013). A successful synthesis of the CoCrFeNiAl 0.3 single-crystal, high-entropy alloy by Bridgman solidification. Jom, 65(12), 1751-1758. [73]Lee, K. S., Kang, J. H., Lim, K. R., & Na, Y. S. (2017). Influence of compressive strain on the microstructural evolution of an AlCoCrFeNi high entropy alloy. Materials Characterization, 132, 162-168. [74]Mohanty, S., Maity, T. N., Mukhopadhyay, S., Sarkar, S., Gurao, N. P., Bhowmick, S., & Biswas, K. (2017). Powder metallurgical processing of equiatomic AlCoCrFeNi high entropy alloy: Microstructure and mechanical properties. Materials Science and Engineering: A, 679, 299-313. [75]Niu, P. D., Li, R. D., Yuan, T. C., Zhu, S. Y., Chen, C., Wang, M. B., & Huang, L. (2019). Microstructures and properties of an equimolar AlCoCrFeNi high entropy alloy printed by selective laser melting. Intermetallics, 104, 24-32. [76]Tsai, M. H., & Yeh, J. W. (2014). High-entropy alloys: a critical review. Materials Research Letters, 2(3), 107-123. [77]Doan, D. Q., Fang, T. H., & Chen, T. H. (2021). Microstructure and composition dependence of mechanical characteristics of nanoimprinted AlCoCrFeNi high-entropy alloys. Scientific Reports, 11, 13680. [78]Gao, X., Lu, Y., Zhang, B., Liang, N., Wu, G., Sha, G., Liu, J., & Zhao, Y. (2017). Microstructural origins of high strength and high ductility in an AlCoCrFeNi2. 1 eutectic high-entropy alloy. Acta Materialia, 141, 59-66. [79]Bhattacharjee, T., Wani, I. S., Sheikh, S., Clark, I. T., Okawa, T., Guo, S., Bhattacharjee, P. P., & Tsuji, N. (2018). Simultaneous strength-ductility enhancement of a nano-lamellar AlCoCrFeNi 2.1 eutectic high entropy alloy by cryo-rolling and annealing. Scientific Reports, 8, 3276. [80]Zhang, Y., Wang, X., Li, J., Huang, Y., Lu, Y., & Sun, X. (2018). Deformation mechanism during high-temperature tensile test in an eutectic high-entropy alloy AlCoCrFeNi2. 1. Materials Science and Engineering: A, 724, 148-155. [81]Li, C., Li, J. C., Zhao, M., & Jiang, Q. (2010). Effect of aluminum contents on microstructure and properties of AlxCoCrFeNi alloys. Journal of Alloys and Compounds, 504, S515-S518. [82]Shi, Y., Collins, L., Balke, N., Liaw, P. K., & Yang, B. (2018). In-situ electrochemical-AFM study of localized corrosion of AlxCoCrFeNi high-entropy alloys in chloride solution. Applied Surface Science, 439, 533-544. [83]Chao, Q., Guo, T., Jarvis, T., Wu, X., Hodgson, P., & Fabijanic, D. (2017). Direct laser deposition cladding of AlxCoCrFeNi high entropy alloys on a high-temperature stainless steel. Surface and Coatings Technology, 332, 440-451. [84]Zhang, J., Wei, Y., Sun, T., Hartmaier, A., Yan, Y., & Li, X. (2012). Twin boundary spacing-dependent friction in nanotwinned copper. Physical Review B, 85(5), 054109. [85]Doan, D. Q., Fang, T. H., & Chen, T. H. (2020). Effects of grain and twin boundary on friction and contact characteristics of CuZrAl nanocrystallines. Applied Surface Science, 524, 146458. [86]Villapún, V. M., Zhang, H., Howden, C., Chow, L. C., Esat, F., Pérez, P., ... & González, S. (2017). Antimicrobial and wear performance of Cu-Zr-Al metallic glass composites. Materials & Design, 115, 93-102. [87]Guo, Z., Ma, D., Zhang, X., Li, J., & Feng, J. (2019). Preparation and toughening of a-CuZr/c-ZrN nano-multilayer hard coatings. Applied Surface Science, 483, 432-441. [88]Ye, Y. X., Liu, C. Z., Wang, H., & Nieh, T. G. (2018). Friction and wear behavior of a single-phase equiatomic TiZrHfNb high-entropy alloy studied using a nanoscratch technique. Acta Materialia, 147, 78-89. [89]Bhardwaj, V., Zhou, Q., Zhang, F., Han, W., Du, Y., Hua, K., & Wang, H. (2021). Effect of Al addition on the microstructure, mechanical and wear properties of TiZrNbHf refractory high entropy alloys. Tribology International, 160, 107031. [90]Zhao, Y. Y., Ye, Y. X., Liu, C. Z., Feng, R., Yao, K. F., & Nieh, T. G. (2019). Tribological behavior of an amorphous Zr20Ti20Cu20Ni20Be20 high-entropy alloy studied using a nanoscratch technique. Intermetallics, 113, 106561. [91]Doan, D. Q., Fang, T. H., & Chen, T. H. (2021). Machining mechanism and deformation behavior of high-entropy alloy under elliptical vibration cutting. Intermetallics, 131, 107079. [92]Pham, V. T., & Fang, T. H. (2021). Influences of grain size, alloy composition, and temperature on mechanical characteristics of Si100-xGex alloys during indentation process. Materials Science in Semiconductor Processing, 123, 105568. [93]Doan, D. Q., Fang, T. H., & Chen, T. H. (2020). Nanotribological characteristics and strain hardening of amorphous Cu64Zr36/crystalline Cu nanolaminates. Tribology International, 147, 106275. [94]Doan, D. Q., Fang, T. H., Tran, A. S., & Chen, T. H. (2020). High deformation capacity and dynamic shear band propagation of imprinted amorphous Cu50Zr50/crystalline Cu multilayered nanofilms. Journal of Physics and Chemistry of Solids, 138, 109291. [95]Zhu, Y., Liao, G., Shi, T., Li, M., Tang, Z., & Xiong, F. (2015). Thermoplastic deformation and structural evolutions in nanoimprinting metallic glasses using molecular dynamics analysis. Journal of Non-Crystalline Solids, 427, 46-53. [96]Wu, C. D., & Hou, C. J. (2018). Molecular dynamics analysis of plastic deformation and mechanics of imprinted metallic glass films. Computational Materials Science, 144, 248-255. [97]Qiu, C., Zhu, P., Fang, F., Yuan, D., & Shen, X. (2014). Study of nanoindentation behavior of amorphous alloy using molecular dynamics. Applied Surface Science, 305, 101-110. [98]Imran, M., Hussain, F., Rashid, M., Cai, Y., & Ahmad, S. A. (2013). Mechanical behavior of Cu-Zr bulk metallic glasses (BMGs): A molecular dynamics approach. Chinese Physics B, 22(9), 096101. [99]Chu, J. P., Jang, J. S. C., Huang, J. C., Chou, H. S., Yang, Y., Ye, J. C., ... & Rullyani, C. (2012). Thin film metallic glasses: Unique properties and potential applications. Thin Solid Films, 520(16), 5097-5122. [100]Allen, M. P. (2004). Introduction to molecular dynamics simulation. Computational Soft Matter: from synthetic Polymers to Proteins, 23(1), 1-28. [101]Komanduri, R., & Raff, L. M. (2001). A review on the molecular dynamics simulation of machining at the atomic scale. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 215(12), 1639-1672. [102]Plimpton, S. (1995). Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics, 117(1), 1-19. [103]Gao, F., Qu, J., & Yao, M. (2011). Interfacial thermal resistance between metallic carbon nanotube and Cu substrate. Journal of Applied Physics, 110(12), 124314. [104]Hu, L., & McGaughey, A. J. (2014). Thermal conductance of the junction between single-walled carbon nanotubes. Applied Physics Letters, 105(19), 193104. [105]Ya, F., Jie, Z., & Da-Wei, T. (2014). Influence of chirality on the thermal conductivity of single-walled carbon nanotubes. Chinese Physics B, 23(8), 083101. [106]Fourmont, A., Le Gallet, S., Politano, O., Desgranges, C., & Baras, F. (2020). Effects of planetary ball milling on AlCoCrFeNi high entropy alloys prepared by Spark Plasma Sintering: Experiments and molecular dynamics study. Journal of Alloys and Compounds, 820, 153448. [107]Shivam, V., Shadangi, Y., Basu, J., & Mukhopadhyay, N. K. (2020). Evolution of phases, hardness and magnetic properties of AlCoCrFeNi high entropy alloy processed by mechanical alloying. Journal of Alloys and Compounds, 832, 154826. [108]Doan, D. Q., Fang, T. H., Chen, T. H., & Bui, T. X. (2021). Effects of void and inclusion sizes on mechanical response and failure mechanism of AlCrCuFeNi2 high-entropy alloy. Engineering Fracture Mechanics, 107848. [109]Doan, D. Q., Fang, T. H., & Chen, T. H. (2021). Interfacial and mechanical characteristics of TiN/Al composites under nanoindentation. International Journal of Solids and Structures, 226, 111083. [110]Hirel, P. (2015). Atomsk: A tool for manipulating and converting atomic data files. Computer Physics Communications, 197, 212-219. [111]Brostow, W., Dussault, J. P., & Fox, B. L. (1978). Construction of Voronoi polyhedra. Journal of Computational Physics, 29(1), 81-92. [112]Butler, T. M., & Weaver, M. L. (2016). Oxidation behavior of arc melted AlCoCrFeNi multi-component high-entropy alloys. Journal of Alloys and Compounds, 674, 229-244. [113]Farkas, D., & Caro, A. (2020). Model interatomic potentials for Fe–Ni–Cr–Co–Al high-entropy alloys. Journal of Materials Research, 35(22), 3031-3040. [114]Bahramyan, M., Mousavian, R. T., & Brabazon, D. (2020). Determination of atomic-scale structure and compressive behavior of solidified AlxCrCoFeCuNi high entropy alloys. International Journal of Mechanical Sciences, 171, 105389. [115]Doan, D. Q., Fang, T. H., Tran, A. S., & Chen, T. H. (2019). Residual stress and elastic recovery of imprinted Cu-Zr metallic glass films using molecular dynamic simulation. Computational Materials Science, 170, 109162. [116]Toyohara, R., Kurosawa, D., Hammer, N., Werner, M., Honda, K., Sekiguchi, Y., Izumi, S., Murakami, E., Ozawa, H., & Ohashi, T. (2020). Finite element analysis of load transition on sacroiliac joint during bipedal walking. Scientific Reports, 10, 13683. [117]Goel, S., Beake, B., Chan, C. W., Faisal, N. H., & Dunne, N. (2015). Twinning anisotropy of tantalum during nanoindentation. Materials Science and Engineering: A, 627, 249-261. [118]Shimizu, F., Ogata, S., & Li, J. Theory of shear banding in metallic glasses and molecular dynamics calculations. Materials Transactions, 0710160231-0710160231 (2007). [119]Arman, B., Luo, S. N., Germann, T. C., & Çağın, T. (2010). Dynamic response of Cu 46 Zr 54 metallic glass to high-strain-rate shock loading: Plasticity, spall, and atomic-level structures. Physical Review B, 81(14), 144201. [120]Kardani, A., & Montazeri, A. (2020). Metal-matrix nanocomposites under compressive loading: Towards an understanding of how twinning formation can enhance their plastic deformation. Scientific Reports, 10, 9745. [121]Kelchner, C. L., Plimpton, S. J., & Hamilton, J. C. (1998). Dislocation nucleation and defect structure during surface indentation. Physical Review B, 58(17), 11085. [122]Zhu, P. Z., Qiu, C., Fang, F. Z., Yuan, D. D., & Shen, X. C. (2014). Molecular dynamics simulations of nanometric cutting mechanisms of amorphous alloy. Applied Surface Science, 317, 432-442. [123]Stukowski, A. (2009). Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Modelling and Simulation in Materials Science and Engineering, 18(1), 015012. [124]Wang, J., Pan, Z., Carpenter, K., Han, J., Wang, Z., & Li, H. (2021). Comparative study on crystallographic orientation, precipitation, phase transformation and mechanical response of Ni-rich NiTi alloy fabricated by WAAM at elevated substrate heating temperatures. Materials Science and Engineering: A, 800, 140307. [125]Wu, C. D., Fang, T. H., & Chan, C. Y. (2011). A molecular dynamics simulation of the mechanical characteristics of a C60-filled carbon nanotube under nanoindentation using various carbon nanotube tips. Carbon, 49(6), 2053-2061. [126]Basu, I., Ocelík, V., & De Hosson, J. T. (2018). BCC-FCC interfacial effects on plasticity and strengthening mechanisms in high entropy alloys. Acta Materialia, 157, 83-95. [127]Wang, Z., Zhang, J., ul Hassan, H., Zhang, J., Yan, Y., Hartmaier, A., & Sun, T. (2018). Coupled effect of crystallographic orientation and indenter geometry on nanoindentation of single crystalline copper. International Journal of Mechanical Sciences, 148, 531-539. [128]Chowdhury, M. A., & Helali, M. (2008). The effect of amplitude of vibration on the coefficient of friction for different materials. Tribology International, 41(4), 307-314. [129]Fang, Q., Yi, M., Li, J., Liu, B., & Huang, Z. (2018). Deformation behaviors of Cu29Zr32Ti15Al5Ni19 high entropy bulk metallic glass during nanoindentation. Applied Surface Science, 443, 122-130. [130]Zepeda-Ruiz, L. A., Stukowski, A., Oppelstrup, T., & Bulatov, V. V. (2017). Probing the limits of metal plasticity with molecular dynamics simulations. Nature, 550(7677), 492-495. [131]Fu, T., Peng, X., Wan, C., Lin, Z., Chen, X., Hu, N., & Wang, Z. (2017). Molecular dynamics simulation of plasticity in VN (001) crystals under nanoindentation with a spherical indenter. Applied Surface Science, 392, 942-949. [132]Qi, Y., Xu, H., He, T., & Feng, M. (2021). Effect of crystallographic orientation on mechanical properties of single-crystal CoCrFeMnNi high-entropy alloy. Materials Science and Engineering: A, 814, 141196. [133]Thompson, N. (1953). Dislocation nodes in face-centred cubic lattices. Proceedings of the Physical Society. Section B, 66(6), 481. [134]Paulauskas, T., Buurma, C., Colegrove, E., Stafford, B., Guo, Z., Chan, M. K., Sun. C., Kim, M. J., Sivananthan, S., & Klie, R. F. (2014). Atomic scale study of polar Lomer–Cottrell and Hirth lock dislocation cores in CdTe. Acta Crystallographica Section A: Foundations and Advances, 70(6), 524-531. [135]Kubin, L. P., Madec, R., & Devincre, B. (2003). Dislocation intersections and reactions in FCC and BCC crystals. MRS Online Proceedings Library (OPL), 779. [136]Bai, L., Srikanth, N., Korznikova, E. A., Baimova, J. A., Dmitriev, S. V., & Zhou, K. (2017). Wear and friction between smooth or rough diamond-like carbon films and diamond tips. Wear, 372, 12-20. [137]Warren, A. W., Guo, Y. B., & Weaver, M. L. (2006). The influence of machining induced residual stress and phase transformation on the measurement of subsurface mechanical behavior using nanoindentation. Surface and Coatings Technology, 200(11), 3459-3467. [138]Wu, W., Wei, B., Ni, S., Liu, Y., & Song, M. (2018). Mechanisms for nucleation and propagation of incoherent twins in a CoCrFeNiMo0. 15 high-entropy alloy subject to cold rolling and annealing. Intermetallics, 96, 104-110. [139]Gwalani, B., Soni, V., Lee, M., Mantri, S. A., Ren, Y., & Banerjee, R. (2017). Optimizing the coupled effects of Hall-Petch and precipitation strengthening in a Al0. 3CoCrFeNi high entropy alloy. Materials & Design, 121, 254-260. [140]Jones, M. R., Nation, B. L., Wellington-Johnson, J. A., Curry, J. F., Kustas, A. B., Lu, P., Chandross, M., & Argibay, N. (2020). Evidence of inverse Hall-petch Behavior and Low friction and Wear in High entropy Alloys. Scientific Reports, 10, 10151. [141]Yan, S., Qin, Q. H., & Zhong, Z. (2020). On the real-time atomistic deformation of nano twinned CrCoFeNi high entropy alloy. Nanotechnology, 31(38), 385705. [142]Fu, T., Peng, X., Chen, X., Weng, S., Hu, N., Li, Q., & Wang, Z. (2016). Molecular dynamics simulation of nanoindentation on Cu/Ni nanotwinned multilayer films using a spherical indenter. Scientific Reports, 6, 35665. [143]Fu, T., Peng, X., Huang, C., Xiang, H., Weng, S., Wang, Z., & Hu, N. (2017). In-plane anisotropy and twin boundary effects in vanadium nitride under nanoindentation. Scientific Reports, 7, 4768. [144]Zhou, H., Guo, M., Wang, L., & Zhao, J. (2019). Effect of thickness for nanotwins on the mechanical properties of a Hastelloy. Applied Nanoscience, 1-6. [145]Huang, C., Peng, X., Fu, T., Chen, X., Xiang, H., Li, Q., & Hu, N. (2017). Molecular dynamics simulation of BCC Ta with coherent twin boundaries under nanoindentation. Materials Science and Engineering: A, 700, 609-616. [146]Zhao, P., Wu, J., Chen, H., Liu, H., Li, D., & Tan, J. (2021). Molecular dynamics simulation study of interaction mechanism between grain boundaries and subgrain boundaries in nano-cutting. Journal of Manufacturing Processes, 67, 418-426. [147]Fang, T. H., Wu, C. D., & Chang, W. J. (2007). Molecular dynamics analysis of nanoimprinted Cu–Ni alloys. Applied Surface Science, 253(16), 6963-6968. [148]Li, J., Guo, J., Luo, H., Fang, Q., Wu, H., Zhang, L., & Liu, Y. (2016). Study of nanoindentation mechanical response of nanocrystalline structures using molecular dynamics simulations. Applied Surface Science, 364, 190-200. [149]Rojas-Nunez, J., Baltazar, S. E., Gonzalez, R. I., Bringa, E. M., Allende, S., Kiwi, M., & Valencia, F. J. (2020). Polycrystalline Ni nanotubes under compression: a molecular dynamics study. Scientific Reports, 10, 21096. [150]Li, J., Fang, Q., Liu, B., & Liu, Y. (2016). The effects of pore and second-phase particle on the mechanical properties of machining copper matrix from molecular dynamic simulation. Applied Surface Science, 384, 419-431. [151]Tang, Y., Bringa, E. M., & Meyers, M. A. (2013). Inverse Hall–Petch relationship in nanocrystalline tantalum. Materials Science and Engineering: A, 580, 414-426. [152]Lv, Y., Hu, R., Yao, Z., Chen, J., Xu, D., Liu, Y., & Fan, X. (2017). Cooling rate effect on microstructure and mechanical properties of AlxCoCrFeNi high entropy alloys. Materials & Design, 132, 392-399. [153]Liu, Y., & NGAN, A. W. (2001). Depth dependence of hardness in copper single crystals measured by nanoindentation. Scripta Materialia, 44(2), 237-241. [154]Pan, Z., Li, Y., & Wei, Q. (2008). Tensile properties of nanocrystalline tantalum from molecular dynamics simulations. Acta Materialia, 56(14), 3470-3480. [155]Chen, S., Aitken, Z. H., Wu, Z., Yu, Z., Banerjee, R., & Zhang, Y. W. (2020). Hall-Petch and inverse Hall-Petch relations in high-entropy CoNiFeAlxCu1-x alloys. Materials Science and Engineering: A, 773, 138873. [156]Zhang, L., & Shibuta, Y. (2020). Inverse Hall-Petch relationship of high-entropy alloy by atomistic simulation. Materials Letters, 274, 128024. [157]Jung, B. B., Lee, H. K., & Park, H. C. (2013). Effect of grain size on the indentation hardness for polycrystalline materials by the modified strain gradient theory. International Journal of Solids and Structures, 50(18), 2719-2724. [158]Tian, Y., Fang, Q., & Li, J. (2020). Molecular dynamics simulations for nanoindentation response of nanotwinned FeNiCrCoCu high entropy alloy. Nanotechnology, 31(46), 465701. [159]Qi, Y., He, T., Xu, H., Hu, Y., Wang, M., & Feng, M. (2021). Effects of microstructure and temperature on the mechanical properties of nanocrystalline CoCrFeMnNi high entropy alloy under nanoscratching using molecular dynamics simulation. Journal of Alloys and Compounds, 871, 159516. [160]Pande, C. S., & Cooper, K. P. (2009). Nanomechanics of Hall–Petch relationship in nanocrystalline materials. Progress in Materials Science, 54(6), 689-706. [161]Afanasyev, K. A., & Sansoz, F. (2007). Strengthening in gold nanopillars with nanoscale twins. Nano Letters, 7(7), 2056-2062. [162]Tian, Y., Ding, J., Huang, X., Zheng, H. R., Song, K., Lu, S. Q., & Zeng, X. G. (2020). Plastic deformation mechanisms of tension-compression asymmetry of nano-polycrystalline tial: Twin boundary spacing and temperature effect. Computational Materials Science, 171, 109218. [163]Wu, C. D., Fang, T. H., Chen, C. Y., & Weng, C. I. (2014). Effect of nanograin size on nanoformed NiTi alloys. Applied Surface Science, 292, 500-505. [164]Wang, Y., Yang, Y., Yang, H., Zhang, M., Ma, S., & Qiao, J. (2018). Microstructure and wear properties of nitrided AlCoCrFeNi high-entropy alloy. Materials Chemistry and Physics, 210, 233-239. [165]Geng, Y., Tan, H., Cheng, J., Chen, J., Sun, Q., Zhu, S., & Yang, J. (2020). Microstructure, mechanical and vacuum high temperature tribological properties of AlCoCrFeNi high entropy alloy based solid-lubricating composites. Tribology International, 151, 106444. [166]Shi, P., Yu, Y., Xiong, N., Liu, M., Qiao, Z., Yi, G., Yao, Q., Zhao, G., Xie, E., & Wang, Q. (2020). Microstructure and tribological behavior of a novel atmospheric plasma sprayed AlCoCrFeNi high entropy alloy matrix self-lubricating composite coatings. Tribology International, 151, 106470. [167]Kumar, S., Patnaik, A., Pradhan, A. K., & Kumar, V. (2019). Dry Sliding Wear Behavior of Al 0.4 FeCrNiCo x (x= 0, 0.25, 0.5, 1.0 mol) High-Entropy Alloys. Metallography, Microstructure, and Analysis, 8(4), 545-557. [168]Shuang, S., Lu, S., Zhang, B., Bao, C., Kan, Q., Kang, G., & Zhang, X. (2021). Effects of high entropy and twin boundary on the nanoindentation of CoCrNiFeMn high-entropy alloy: A molecular dynamics study. Computational Materials Science, 195, 110495.
|