|
[1] Suthatta Dontriros, Suched Likitlersuang, Dao Janjaroen,(2020). “Mechanisms of chloride and sulfate removal from municipal-solid-waste-incineration fly ash(MSWI FA): Effect of acid-base solution”. Waste Management, vol.101, 44-53. [2] Metcalf & Eddy, Inc., Tchobanoglous, George, Stensel H. David, Tsuchihashi Ryujiro, Burton Franklin,(2013). “Wastewater Engineering: Treatment and Resource Recovery”. [3] Hanna Prokkola, Emma-Tuulia Nurmesniemi and Ulla Lassi,(2020). “Removal of Metals by Sulphide Precipitation Using Na2S and HS—Solution”. ChemEngineering, vol.4, 51. [4] Wenchao Ma, Wenga, Terrence, Flemming J.Frandsen, YanBeibei, Chen, Guanyi,(2020). “The fate of chlorine during MSW incineration: Vaporization, transformation, deposition, corrosion and remedies”. Progress in Energy and Combustion Science, vol.76, 100789. [5] Chunlong Zhao, Shujie Lin, Youcai Zhao, Kunsen Lin, Lu Tian, Mengqin Xie, Tao Zhou,(2021). “Comprehensive understanding the transition behaviors and mechanisms of chlorine and metal ions in municipal solid waste incineration fly ash during thermal treatment”. Science of The Total Environment, vol.807, 150731. [6] Michaёl Becidan,(2018). “Fly ash treatment technologies, An overview of commercial and upcoming technologies for Norway and Scandinavia”. 502001911. [7] Hongwei Luo, Ying Cheng, Dongqin He, En-Hua Yang,(2019). “Review of leaching behavior of municipal solid waste incineration(MSWI)ash”. Science of the Total Environment, vol.668, 90-103. [8] Gisela Weibel, Urs Eggenberger, Dmitrii A. Kulik, Wolfgang Hummel, Stefan Schlumberger, Waldemar Klink, Martin Fisch, Urs K. Mäder,(2018). “Extraction of heavy metals from MSWI fly ash using hydrochloric acid and sodium chloride solution”. Waste Management, vol.76, 457-471. [9] Jinfeng Tang, Minhua Su, Qihang Wu, Lezhang Wei, Nana Wang, Enzong Xiao, Hongguo Zhang, Yongjun Wei, Yingkui Liu, Christian Ekberg, Britt-Marie Steenari, Tangfu Xiao,(2019). “Highly efficient recovery and clean-up of four heavy metals from MSWI fly ash by integrating leaching, selective extraction and adsorption, Journal of Cleaner Production”. vol.234, 139-149. [10] Huang Kai1, Katsutoshi INOUE, Hiroyuki HARADA, Hidetaka KAWAKITA, Keisuke OHTO,(2011). “Leaching behavior of heavy metals with hydrochloric acid from fly ash generated in municipal waste incineration plants”. Trans. Nonferrous Met. Soc. China, vol.21, 1422-1427. [11] Kai Huang, Katsutoshi Inoue, Hiroyuki Harada, Hidetaka Kawakita, Keisuke Ohto,(2011). “Leaching of heavy metals by citric acid from fly ash generated in municipal waste incineration plants”. vol.13, 118-126. [12] Jinfeng Tang, Britt-Marie Steenari,(2015). “Leaching optimization of municipal solid waste incineration ash for resource recovery: A case study of Cu, Zn, Pb and Cd”. Waste Management. [13] M.Tyrer,(2013). “Municipal solid waste incinerator(MSWI)concrete”. Woodhead Publishing Series in Civil and Structural Engineering, vol.12, 273-310. [14] Raynard Christianson Sanito, Sheng-Jie You, Ya-Fen Wang,(2021). “Application of plasma technology for treating e-waste: A review”. Journal of Environmental Management, vol.288, 112380. [15] Hui-Sheng Shi, Li-LiKan,(2009). “Leaching behavior of heavy metals from municipal solid wastes incineration(MSWI)fly ash used in concrete”. Journal of Hazardous Materials, vol.164, 750-754. [16] Dickson, L. C.; Lenoir, D.; Hutzinger, O,(1992). “Quantitative Comparison of de Novo and Formation of Polychlorinated Dibenzo-p-dioxins under Simulated Municipal Solid Waste Incinerator Postcombustion Conditions”. Environmental Science and Technology, Vol. 26, 1822-1828. [17] Luijk. R, Akkerman, D. M., Slot P., Olie K., Kapteijn F.,(1994). “Mechanism of Formation of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans in the Catalyzed Combustion of Carbon, Environmental Science and Technology”. Vol. 28, 312-321. [18] Junjie Zhang, BoLiu,(2020). “Degradation technologies and mechanisms of dioxins in municipal solid waste incineration fly ash: A review, Journal of Cleaner Production”. vol.250, 119507. [19] Haiping Xiao, Dahai Yan,(2020). “Industrial disposal processes for treatment of polychlorinated dibenzo-p-dioxins and dibenzofurans in municipal solid waste incineration fly ash”. Chemosphere, vol.243, 125351. [20] Ming-Xiu Zhan, Alfons Buekens,(2018). “Low temperature degradation of polychlorinated dibenzo-p-dioxins and dibenzofurans over a VOx-CeOx/TiO2 catalyst with addition of ozone”. Waste Management, vol.76, 555-565. [21] Tuppurainen, K. Tuppurainen, I. Halonen, P. Ruokojärvi, J. Tarhanen, J. Ruuskanen,(1998). “Formation of PCDDs and PCDFs in municipal waste incineration and its inhibition mechanisms: a review”. Chemosphere, vol.36, 1493-1511. [22] Amirtharajah, A., Mills, K. M.,(1982). “Rapid-mix design for mechanism of alum coagulation”. Journal AWWA Annual Conference, 210-216. [23] Leu, Jia-Minn.,(2004). “Removal Characterization of Amophous Silica in Chemical Coagulation Process in the High-Tech Industrial Wastewater”. [24] Dentel, S. K.,(1998). “Application of the precipitation-charge neutralization model of coagulation”. Environmental science & technology, vol.22(7), 825-832. [25] La Mer, V. K.,(1964). “Coagulation symposium introduction”. Journal of Colloid Science, vol.19(4), 291-293. [26] Addink, R. Addink, F. Espourteille, E.R. Altwicker,(1998). “Role of inorganic chlorine in the formation of polychlorinated dibenzo-p-dioxins/dibenzofurans from residual carbon on incinerator fly ash”. Environ. Sci. Technol., vol.21, 3356-3359. [27] I. Vermeulen, J. Van Caneghem, C. Vandecasteele,(2014). “Indication of PCDD/F formation through precursor condensation in a full-scale hazardous waste incinerator”. J. Mater. Cycles. Waste., vol.16, 167-171. [28] V.I. Babushok, W. Tsang,(2003). “Gas-phase mechanism for dioxin formation”. Chemosphere, vol.51, 1023-1029. [29] G. McKay,(2002). “Dioxin characterisation, formation and minimisation during municipal solid waste(MSW)incineration: review”. Chem. Eng. J., vol.86, 343-368. [30] Maryam Zare, Jeddi, Polly E.Boon, Francesco Cubadda, Ron Hoogenboom, Hans Mol, Hans Verhagen, Dick T.H.M.Sijm,(2021). “A vision on the ‘foodture’ role of dietary exposure sciences in the interplay between food safety and nutrition”. Trends in Food Science & Technology. [31] K.Kannan, K.M.Aldous,(2005). “DIOXINS”. Encyclopedia of Analytical Science(Second Edition), 274-281. [32] Yong-Jin Kim, Masahiro Osako,(2004). “Investigation on the humification of municipal solid waste incineration residue and its effect on the leaching behavior of dioxins”. Waste Management, vol.24(8), 815-823. [33] W.-Y. Chen, J.-H. Wu, S.-C. Lin, J.-E. Chang,(2016). “Bioremediation of polychlorinated-p-dioxins/dibenzofurans contaminated soil using simulated compost-amended landfill reactors under hypoxic conditions”. J. Hazard. Mater., 159-168. [34] US EPA,(2007). “Ecological soil screening levels for polycyclic aromatic hydrocarbons(PAHs)”. OSWER directive, 9285, 7-78. [35] FrançoiseGirardot et. al,(2021). “Bacterial diversity on an abandoned, industrial wasteland contaminated by polychlorinated biphenyls, dioxins, furans and trace metals”. Science of The Total Environment, vol.748, 141242. [36] H. Vogg, L. Stieglitz,(1986). “Thermal behaviour of PCDD/PCDF in fly ash from municipal incinerators, Chemosphere”. vol.15, 1373-1378. [37] A.M. Cunliffe, P.T. Williams,(2009). “De-novo formation of dioxins and furans and the memory effect in waste incineration flue gases”. Waste Manage., vol.29, 739-748. [38] H. Huang, a. Buekens,(1995). “On the mechanisms of dioxins formation in combustion processes, Chemosphere”. vol.31, 4099-4117. [39] C.S. Evans, B. Dellinger,(2005). “Mechanisms of dioxins formation from the high-temperature oxidation of 2-bromophenol”. Environ. Sci. Technol., vol.39, 2128-2134. [40] Stieglitz L., Vogg, H., Report KFK 4379,(1988). “Laboratorium fur Isotopentechnik, Institut fur Heize Chemi, Kernforschungszentrum Karlsruhe”. [41] Hagenmaier H., Kraft M., Brunner H., Haag, R.,(1987). “Catalytic Effects of Fly Ash from Waste Incineration Facilities on the Decomposition of Polychlorinated Dibenzo-p-dioxins and Polychlorinated Dibenzofurans”. Environmental Science and Technology, Vol. 21, 1080-1084. [42] T.Y.Huang, P.T.Chiueh, S.L.Lo,(2017). “Life-cycle environmental and cost impacts of reusing fly ash, Resources, Conservation and Recycling”. vol.123, 255-260. [43] M.J. Quina, E. Bontempi, A. Bogush, S. Schlumberger, G. Weibel, R. Braga, V. Funari, J. Hyks, E. Rasmussen, J. Lederer,(2018). “Technologies for the management of MSW incineration ashes from gas cleaning: new perspectives on recovery of secondary raw materials and circular economy, Sci. Total Environ.”. vol.635, 2018, 526-542. [44] A.M. Joseph, R. Snellings, P.V.D. Heede, S. Matthys, N.D. Belie,(2018). “The Use of municipal solid waste incineration ash in various building materials: A Belgian point of view”. Materials(Basel), vol.11, 1-30. [45] M. Aguiar del Toro, W. Calmano, H. Ecke,(2009). “Wet extraction of heavy metals and chloride from MSWI and straw combustion fly ashes”. Waste Manage., vol.29, 2494-2499. [46] W.-S. Chen, F.-C. Chang, Y.-H. Shen, M.-S. Tsai, C.-H. Ko,(2012), “Removal of chloride from MSWI fly ash”. J. Hazard. Mater, 116-120. [47] P.H. Brunner, H. Rechberger,(2015). “Waste to energy – key element for sustainable waste management, Waste Manag.”. vol.37, 3-12. [48] H. Kitamura, T. Sawada, T. Shimaoka, F. Takahashi,(2016). “Geochemically structural characteristics of municipal solid waste incineration fly ash particles and mineralogical surface conversions by chelate treatment”. Environ. Sci. Pollut. Res., vol.23, 734-743. [49] H. Zhang, P.-J. He, L.-M. Shao, D.-J. Lee,(2008). “Temporary stabilization of air pollution control residues using carbonation”. Waste Manag., vol.28, 509-517. [50] Wenchao Ma, Dongmei Chen, Minhui Pan, Tianbao Gu, Lei Zhong, Guanyi Chen, Beibei Yan, Zhanjun Cheng,(2019). “Performance of chemical chelating agent stabilization and cement solidification on heavy metals in MSWI fly ash: A comparative study”. Journal of Environmental Management, vol.247, 169-177. [51] A.P. Bayuseno, W.W. Schmahl,(2011). “Characterization of MSWI fly ash through mineralogy and water extraction, Resour. Conserv. Recycl.”. vol.55, 524-534. [52] F.H. Wang, F. Zhang, Y.J. Chen, J. Gao, B. Zhao, A comparative study on the heavy metal solidification/stabilization performance of four chemical solidifying agents in municipal solid waste incineration fly ash, J. Hazard Mater., vol.300, 2015, 451-458. [53] T. Okada, H. Tomikawa,(2013). “Effects of chemical composition of fly ash on efficiency of metal separation in ash-melting of municipal solid waste”. Waste Manag., vol.33, 605-614. [54] J.B. Wang, R.X. Qin,(2013). “Organic chelators stabilize heavy metals in fly ash”. Environ. Sci. Technol., vol.9, 139-143. [55] Y. Sun, J. Zheng, L. Zou, Q. Liu, P. Zhu, G. Qian,(2011). “Reducing volatilization of heavy metals in phosphate-pretreated municipal solid waste incineration fly ash by forming pyromorphite-like minerals”. Waste Manag., vol.31, 325-330. [56] I. Garcia-Lodeiro, V. Carcelen-Taboada, A. Fernández-Jiménez, A. Palomo,(2016). “Manufacture of hybrid cements with fly ash and bottom ash from a municipal solid waste incinerator, Constr. Build. Mater.”. vol.105, 218-226. [57] Weiming Chen, Fan Wang, Zhi Li, Qibin Li,(2020). “A comprehensive evaluation of the treatment of lead in MSWI fly ash by the combined cement solidification and phosphate stabilization process”. Waste Management, vol.114, 107-114. [58] Xiaoqing Lin, Tieying Mao, Zhiliang Chen, Jie Chen, Sheng Zhang, Xiaodong Li, Jianhua, Yan,(2021). “Thermal cotreatment of municipal solid waste incineration fly ash with sewage sludge: Phases transformation, kinetics and fusion characteristics, and heavy metals solidification”. Journal of Cleaner Production, vol.317, 128429. [59] S. Wu, Y. Xu, J. Sun, Z. Cao, J. Zhou, Y. Pan,(2015). “Inhibiting evaporation of heavy metal by controlling its chemical speciation in MSWI fly ash Fuel”. vol.158, 764-769. [60] Tomáš Bakalár, Henrieta Pavolová, Zuzana Hajduová, Roman Lacko, Kamil Kyšeľa,(2021). “Metal recovery from municipal solid waste incineration fly ash as a tool of circular economy, Journal of Cleaner Production”. vol. 302, 126977. [61] Qian-gang Li, Guo-hua Liu, Lu Qi, Hong-chen Wang, Zheng-fang Ye, Quan-lin Zhao,(2022). “Heavy metal-contained wastewater in China: Discharge”, management and treatment, Science of The Total Environment, vol.808, 152091. [62] Tawfik A.Saleh, Mujahid Mustaqeem, Mazen Khalede,(2022), “Water treatment technologies in removing heavy metal ions from wastewater: A review”. Environmental Nanotechnology, Monitoring & Management, vol.17, 100617. [63] H.A. Aziz, M.N. Adlan, K.S. Ariffin,(2008). “Heavy metals(Cd, Pb, Zn, Ni, Cu and Cr(III))removal from water in Malaysia: post treatment by high quality limestone”. Bioresour. Technol., vol.99, 1578-1583. [64] T.A. Kurniawan, G.Y.S. Chan, W.H. Lo, S. Babel,(2006). “Physico-chemical treatment techniques for wastewater laden with heavy metals”. Chem. Eng. J., vol.118, 83-98. [65] T.P. Mokone, R.P. van Hille, A.E. Lewis,(2011), “Effect of solution chemistry on particle characteristics during metal sulfide precipitation”. J. Colloid Interface Sci., vol.351, 10-18. [66] Quanyuan Chen, Yuan Yaoa, Xinying Li, Jun Lu, Juan Zhou, Zhaolu Huang,(2018), “Comparison of heavy metal removals from aqueous solutions by chemical precipitation and characteristics of precipitates”. Journal of Water Process Engineering, vol.26, 289-300. [67] Arvind Singh, Dan Bahadur Pal, Akbar Mohammad, Alaa Alhazm, Shafiul Haque, Taeho Yoon, Neha Srivastava, Vijai Kumar Gupta,(2022). “Biological remediation technologies for dyes and heavy metals in wastewater treatment: New insight, Bioresource Technology”. vol.343, 126154. [68] J. Dotto, M.R. Fagundes-Klen, M.T. Veit, S.M. Palácio, R. Bergamasco,(2019), “Performance of different coagulants in the coagulation/flocculation process of textile wastewater, J. Cleaner Prod.”. vol.208, 656-665. [69] Y. Sun, S. Zhou, S.-Y. Pan, S. Zhu, Y. Yu, H. Zheng,(2020). “Performance evaluation and optimization of flocculation process for removing heavy metal”. Chem. Eng. J., vol.385, 123911. [70] G. Vijayaraghavan, P.V. Kumar, K. Chandrakanthan, S. Selvakumar,(2017). “Acanthocereus tetragonus an effective natural coagulant for decolorization of synthetic dye wastewater”. Journal of Materials and Environmental Science, vol.8, 3028-3033. [71] Yao-Jen Tu, Chien-Kuei Chang, Chen-Feng You, Shan-Li Wang,(2012), “Treatment of complex heavy metal wastewater using a multi-staged ferrite process”. vol.209-210, 379-384. [72] A.E. Lewis,(2010), “Review of metal sulphide precipitation”. Hydrometallurgy, vol.104, 222-234. [73] F. Akbal, S. Camci,(2010), “Comparison of electrocoagulation and chemical coagulation for heavy metal removal”. Chem. Eng. Technol., vol.33, 1655-1664. [74] Mudila Dhanunjaya Rao, Arunabh Meshram, Himanshu Ranjan Verma, Kamalesh K.Singh, Tilak Raj Mankhand,(2020). “Study to enhance cementation of impurities from zinc leach liquor by modifying the shape and size of zinc dust”. Hydrometallurgy, vol.195, 105352. [75] Bradley A. Striebig,(2005). “Water Encyclopedia Chemical Precipitation”. Physics and Chemistry of Water, vol.4. [76] I.M.Ahmed, Y.A.El-Nadi, J.A.Daoud,(2011). “Cementation of copper from spent copper-pickle sulfate solution by zinc ash”. Hydrometallurgy, vol.110, 62-66. [77] S.A.Nosier, S.ASallam,(2000). “Removal of lead ions from wastewater by cementation on a gas-sparged zinc cylinder”. Separation and Purification Technology, vol.18, 93-101. [78] Agata Rosińska, Lidia Dąbrowska,(2021). “Influence of type and dose of coagulants on effectiveness of PAH removal in coagulation water treatment”. Water Science and Engineering, vol.14, 193-200. [79] Sarmistha Sen Raychaudhuri, Paulami Pramanick, PratikTalukder, Apaala Basak,(2021). “Chapter 6 - Polyamines, metallothioneins, and phytochelatins—Natural defense of plants to mitigate heavy metals”. Studies in Natural Products Chemistry, vol.69, 227-261. [80] Jamila El-Gaayda, Fatima Ezzahra Titchoua Rachid Oukhrib, Pow-SengYap, Tianqi Liu, Mohamed Hamdani, Rachid Ait Akbour,(2021). “Natural flocculants for the treatment of wastewaters containing dyes or heavy metals: A state-of-the-art review”. Journal of Environmental Chemical Engineering, vol.9, 106060. [81] Yang Deng, Renzun Zhao,(2015). “Advanced Oxidation Processes(AOPs)in Wastewater Treatment”. Water pollution, vol.1, 167-176. [82] Ana Paula Barbosa Rodrigues de Freitas, Leandro Valim de Freitas, Carla Cristina Almeida Loures, Lúcio Gualiato Gonçalves, Messias Borges Silva,(2014). “Response surface method and Taguchi Orthogonal Array applied to phenolic wastewater by advanced oxidation process(AOP)”. American Journal of Theoretical and Applied Statistics, vol.3, 35-41. [83] Yang Xue, Xiaoming Liu,(2021). “Detoxification, solidification and recycling of municipal solid waste incineration fly ash: A review, Chemical Engineering Journal”. vol.420, 130349. [84] Gottschalk C, Libra JA, Saupe A.,(2009). “Ozonation of water and wastewater: a practical guide to understanding ozone and its applications”.John Wiley & Sons. [85] Pignatello JJ, Oliveros E, MacKay A,(2006). “Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry”. Crit Rev Environ Sci Technol, vol.36, 1-84. [86] R. E. Buhler, J. Staehelin, J. Hoigne,(1984). “Ozone decomposition in water studied by pulse radiolysis. 1. HO2/O2- and HO3/O3 - as intermeduates”. J. Phys. Chem. Vol.88, 2560-2564. [87] J. Staehelin, R. E. Buhler, J. Hoigne.(1984). “Ozone decomposition in water studied by pulse radiolysis. 2. OH and HO4 as chain intermediates”. J. Phys. Chem, vol.88, 5999-6004. [88] R. F. Javier, F. Beltran, O. Gimeno, B. Acedo, F. Carvalho,(2003). “Stabilized leachates: ozone-activated carbon treatment and kinetics”. Water Res.37, 4823-4834. [89] J. F, Beltrán,(2005). “Ozone Reaction Kinetics for Water and Wastewater Systems”. Lewis Publishers, New York. [90] Fan, Chihhao, Tsui, Lo, Liao, Ming-chu,(2011). “Parathion degradation and its intermediate formation by Fenton process in neutral environment”. Chemosphere ,vol.82, 229-236. [91] Fenton, H. J. H.,(1984). “Oxidation of tartaric acid in presence of iron, Journal of the Chemical Society”. vol.65, 899-910. [92] Chenxi Zhang, Tingli Sun, Xiaomin Sun,(2011). “Mechanism for OH-Initiated Degradation of 2,3,7,8-Tetrachlorinated Dibenzo-p-Dioxins in the Presence of O2 and NO/H2O”. Environmental Science & Technology, vol.11, 4756-4762. [93] Qin Wang, Jian-Hua Yan, Yong Chi, Xiao-Dong Li, Sheng-Yong Lu,(2010). “Application of thermal plasma to vitrify fly ash from municipal solid waste incinerators”. Chemosphere, vol.78, 626-630. [94] Kuo-Pin Yu, Grace W.M. Lee,(2007). “Decomposition of gas-phase toluene by the combination of ozone and photocatalytic oxidation process(TiO2/UV, TiO2/UV/O3, and UV/O3)”. Applied Catalysis B: Environmental, vol.75, 29-38. [95] 蔡得時、巫宗威(2017),垃圾焚化爐底渣混凝土工程性能之研究,中國科技大學。 [96] 賴淳仁、蔡加正、郭益銘(2015),硫酸處理焚化飛灰之可行性研究,國立高雄海洋科技大學海洋環境工程所。 [97] 謝慶弘、曾昭桓(2003),以水洗酸溶處理垃圾焚化飛灰可行性之研究,國立中興大學環境工程研究所。 [98] 吳惠婷、顧洋(2021),以鋅板同時金屬置換水溶銅、鎘和鉛離子之研究,國立臺灣科技大學化學工程系。 [99] 吳少鈞、高思懷(2019),回收都市垃圾焚化飛灰燒製高價值陶瓷濾膜之研發,淡江大學水資源及環境工程學系。 [100] 林以潔、陳志成、江金龍(2016),焚化飛灰鹼熔水熱合成沸石與再利用研究,弘光科技大學環境與安全衛生工程系。 [101] 陳麗萍、張坤森(2012),垃圾焚化飛灰無害化及資材化作為混凝土與紅磚之研究,國立聯合大學環境與安全衛生工程學系。 [102] 吳少鈞、高思懷(2019),回收都市垃圾焚化飛灰燒製高價值陶瓷膜之研發,淡江大學水資源及環境工程學系。 [103] 林以潔、陳志成、江金龍(2016),焚化飛灰鹼熔水熱合成沸石與再利用研究,弘光科技大學環境與安全衛生工程系。 [104] 陳麗萍、張坤森(2012),垃圾焚化飛灰無害化及資材化作為混凝土與紅磚之研究,國立聯合大學環境與安全衛生工程學系。 [105] 行政院環境保護署焚化廠營運管理資訊系統,from https://swims.epa.gov.tw/。 [106] 行政院環境保護署(2015),焚化底渣再生粒料應用於控制性低強度回填材料,環署循字第 1040064971 號。 [107] 行政院環境保護署(2020),垃圾焚化廠焚化底渣再利用管理方式,環署循字第 1090035222 號。 [107] 行政院環境保護署(2021),事業廢棄物貯存清除處理方法及設施標準,環署循字第1111016706號。 [108] 山口エコテック株式会社,ごみ焼却灰等をセメント原料化するための有害物質の除去処理,from https://y-eco.co.jp/。
|