|
[1] A. Ahmad, & S. S. Khan, (2019). Survey of state-of-the-art mixed data clustering algorithms. IEEE Access, 7, 31883-31902. [2] Y. L. Abdel-Magid, M. A. Abido, S. Al-Baiyat, & A. H. Mantawy, (1999). Simultaneous stabilization of multimachine power systems via genetic algorithms. IEEE transactions on Power Systems, 14(4), 1428-1439. [3] A. Askarzadeh, (2016). A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Computers & Structures, 169, 1-12. [4] S. Arora, & S. Singh, (2019). Butterfly optimization algorithm: a novel approach for global optimization. Soft Computing, 23(3), 715-734. [5] E. Aarts, E. H. Aarts, & J. L. Lenstra, (Eds.). (2003). Local search in combinatorial optimization. Princeton University Press. [6] J. C. Bezdek, (2013). Pattern recognition with fuzzy objective function algorithms. Springer Science & Business Media. [7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, & C. Stein, (2009). Introduction to algorithms. MIT press. [8] L. Chen, C. P. Chen, & M. Lu, (2011). A multiple-kernel fuzzy c-means algorithm for image segmentation. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 41(5), 1263-1274. [9] M. Dolatabadi, & Y. Damchi, (2019). Graph Theory Based Heuristic Approach for Minimum Break Point Set Determination in Large Scale Power Systems. IEEE Transactions on Power Delivery, 34(3), 963-970. [10] M. Dorigo, M. Birattari, & T. Stutzle, (2006). Ant colony optimization. IEEE computational intelligence magazine, 1(4), 28-39. [11] J. C. Dunn, (1973). A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. [12] J. Derrac, S. García, D. Molina, & F. Herrera, (2011). A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm and Evolutionary Computation, 1(1), 3-18. [13] R. Enayatifar, A. H. Abdullah, & I. F. Isnin, (2014). Chaos-based image encryption using a hybrid genetic algorithm and a DNA sequence. Optics and Lasers in Engineering, 56, 83-93. [14] R. Eberhart, & J. Kennedy, (1995, November). Particle swarm optimization. In Proceedings of the IEEE international conference on neural networks (Vol. 4, pp. 1942-1948). [15] F. W. Glover, & G. A. Kochenberger, (Eds.). (2006). Handbook of metaheuristics (Vol. 57). Springer Science & Business Media. [16] D. E. Goldberg, & J. H. Holland, (1988). Genetic algorithms and machine learning. [17] F. Han, J. Jiang, Q. H. Ling, & B. Y. Su, (2019). A survey on metaheuristic optimization for random single-hidden layer feedforward neural network. Neurocomputing, 335, 261-273. [18] Y. Hu, & S. X. Yang, (2004, April). A knowledge based genetic algorithm for path planning of a mobile robot. In IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA'04. 2004 (Vol. 5, pp. 4350-4355). IEEE. [19] K. W. Huang, Z. X. Wu, H. W. Peng, M. C. Tsai, Y. C. Hung, & Y. C. Lu, (2019). Memetic Particle Gravitation Optimization Algorithm for Solving Clustering Problems. IEEE Access, 7, 80950-80968. [20] K. W. Huang, & Z. X. Wu, (2018). CPO: A Crow Particle Optimization Algorithm. International Journal of Computational Intelligence Systems, 12(1), 426-435. [21] J. A. Hartigan, & M. A. Wong, (1979). Algorithm AS 136: A k-means clustering algorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics), 28(1), 100-108. [22] J. Kennedy, (2006). Swarm intelligence. In Handbook of nature-inspired and innovative computing (pp. 187-219). Springer, Boston, MA. [23] A. H. Khan, S. Li, & X. Luo, (2019). Obstacle avoidance and tracking control of redundant robotic manipulator: An rnn based metaheuristic approach. IEEE Transactions on Industrial Informatics. [24] D. Karaboga, & B. Basturk, (2007). A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. Journal of global optimization, 39(3), 459-471. [25] R. C. T. Lee, R. C. Chang, Y. T. Tsai, & S. S. Tseng, (2005). Introduction to the Design and Analysis of Algorithms. Tata McGraw-Hill. [26] H. Liu, R. Zhao, H. Fang, F. Cheng, Y. Fu, & Y. Y. Liu, (2017). Entropy-based consensus clustering for patient stratification. Bioinformatics, 33(17), 2691-2698. [27] K. Mistry, L. Zhang, S. C. Neoh, C. P. Lim, & B. Fielding, (2016). A micro-GA embedded PSO feature selection approach to intelligent facial emotion recognition. IEEE transactions on cybernetics, 47(6), 1496-1509. [28] S. Mirjalili, S. M. Mirjalili, & A. Lewis, (2014). Grey wolf optimizer. Advances in engineering software, 69, 46-61. [29] S. Mirjalili, (2015). Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowledge-based systems, 89, 228-249. [30] S. Mirjalili, & A. Lewis, (2016). The whale optimization algorithm. Advances in engineering software, 95, 51-67. [31] N. Mladenović, & P. Hansen, (1997). Variable neighborhood search. Computers & operations research, 24(11), 1097-1100. [32] W. Niu, Z. Zhuo, X. Zhang, X. Du, G. Yang, & M. Guizani, (2019). A heuristic statistical testing based approach for encrypted network traffic identification. IEEE Transactions on Vehicular Technology, 68(4), 3843-3853. [33] F. Neri, & C. Cotta, (2012). Memetic algorithms and memetic computing optimization: A literature review. Swarm and Evolutionary Computation, 2, 1-14. [34] M. Nawaz, E. E. Enscore Jr, & I. Ham, (1983). A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. Omega, 11(1), 91-95. [35] D. L. Pham, C. Xu, & J. L. Prince, (2000). Current methods in medical image segmentation. Annual review of biomedical engineering, 2(1), 315-337. [36] T. Sousa, A. Silva, & A. Neves, (2004). Particle swarm based data mining algorithms for classification tasks. Parallel computing, 30(5-6), 767-783. [37] C. L. Srinidhi, P. Aparna, & J. Rajan, (2019). Automated Method for Retinal Artery/Vein Separation via Graph Search Metaheuristic Approach. IEEE Transactions on Image Processing, 28(6), 2705-2718. [38] Y. Sun, B. Xue, M. Zhang, & G. G. Yen, (2019). Evolving deep convolutional neural networks for image classification. IEEE Transactions on Evolutionary Computation. [39] Y. Shi, & R. Eberhart, (1998, May). A modified particle swarm optimizer. In 1998 IEEE international conference on evolutionary computation proceedings. IEEE world congress on computational intelligence (Cat. No. 98TH8360) (pp. 69-73). IEEE. [40] M. Sezgin, & B. Sankur, (2004). Survey over image thresholding techniques and quantitative performance evaluation. Journal of Electronic imaging, 13(1), 146-166. [41] M. F. Tasgetiren, Y. C. Liang, M. Sevkli, & G. Gencyilmaz, (2007). A particle swarm optimization algorithm for makespan and total flowtime minimization in the permutation flowshop sequencing problem. European journal of operational research, 177(3), 1930-1947. [42] E. Taillard, (1993). Benchmarks for basic scheduling problems. european journal of operational research, 64(2), 278-285. [43] D. W. Van der Merwe, & A. P. Engelbrecht, (2003, December). Data clustering using particle swarm optimization. In The 2003 Congress on Evolutionary Computation, 2003. CEC'03. (Vol. 1, pp. 215-220). IEEE. [44] Z. X. Wu, K. W. Huang, & A. S. Girsang, (2018, November). A Whole Crow Search Algorithm for Solving Data Clustering. In 2018 Conference on Technologies and Applications of Artificial Intelligence (TAAI) (pp. 152-155). IEEE. [45] X. S. Yang, (2008). Firefly algorithm. Nature-inspired metaheuristic algorithms, 20, 79-90. [46] X. S. Yang, & S. Deb, (2009, December). Cuckoo search via Lévy flights. In 2009 World congress on nature & biologically inspired computing (NaBIC) (pp. 210-214). IEEE. [47] G. Y. Zhu, C. Ding, & W. B. Zhang, (2020). Optimal foraging algorithm that incorporates fuzzy relative entropy for solving many-objective permutation flow shop scheduling problems. IEEE Transactions on Fuzzy Systems. [48] G. Zames, N. M. Ajlouni, N. M. Ajlouni, N. M. Ajlouni, J. H. Holland, W. D. Hills, & D. E. Goldberg, (1981). Genetic algorithms in search, optimization and machine learning. Information Technology Journal, 3(1), 301-302.
|