|
[1]張耿豪, 李韋辰, 林毓庭, 呂寧遠, 鍾幸芸, & 蔡雅惠. (2020). 以人工智慧為基礎之金屬加工製品檢測應用. 機械工業雜誌, (446), 47-52. [2]LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436-444. [3]Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems (NIPS) (pp. 1097-1105). [4]LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324. [5]Kim, S. (2019). A beginner’s guide to convolutional neural networks (CNNs). towards data science. [6]Yamashita, R., Nishio, M., Do, R. K. G., & Togashi, K. (2018). Convolutional neural networks: an overview and application in radiology. Insights into imaging, 9, 611-629. [7]Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 779-788). [8]Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 580-587). [9]Uijlings, J. R., Van De Sande, K. E., Gevers, T., & Smeulders, A. W. (2013). Selective search for object recognition. International journal of computer vision, 104, 154-171. [10]Jakkula, V. (2006). Tutorial on support vector machine (svm). School of EECS, Washington State University, 37(2.5), 3. [11]Girshick, R. (2015). Fast r-cnn. In Proceedings of the IEEE international conference on computer vision (pp. 1440-1448). [12]Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards real-time object detection with region proposal networks. Advances in neural information processing systems, 28. [13]He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). Mask r-cnn. In Proceedings of the IEEE international conference on computer vision (pp. 2961-2969). [14]Lin, T. Y., Dollár, P., Girshick, R., He, K., Hariharan, B., & Belongie, S. (2017). Feature pyramid networks for object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2117-2125). [15]Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3431-3440). [16]Wu, Y., Kirillov, A., Massa, F., Lo, W. Y., & Girshick, R. (2019). Detectron2. [17]Wu, Y., Kirillov, A., Massa, F., Lo, W. Y., & Girshick, R. (2019). Detectron2: A PyTorch-based modular object detection library. Meta AI, 10. [18]顏俊杰,2022,”基於深度學習技術之玻璃瑕疵檢測”,國立高雄科技大學電機工程系研究所論文。 [19]藍兆祥,2021,” 應用影像生成模型於少樣本木材表面瑕疵檢測”,國立台灣大學機械工程學研究所論文。 [20]吳亭慧,2019,”筆記型電腦滑鼠觸控板表面瑕疵檢測系統”,國立台北科技大學工業工程與管理系研究所論文。 [21]蘇勇安,2023,”基於YOLO演算法之螺帽的模型分類”,國立雲林科技大學電機工程系研究所論文。 [22]陳宥廷,2019,”基於深度學習進行俯視角度的行人偵測”,國立雲林科技大學資訊工程系研究所論文。 [23]許峻銘,2021,”基於深度學習之螺絲表面瑕疵檢測系統設計與實現”,南臺科技大學電子工程系研究所論文。
|