1.Cui, Y., Y. Xiang, Z. Deng, Z. Zhang, L. Li, J. Wei, W. Gui, and Y. Xu, Preparation of natural rubber based semi-IPNs superabsorbent and its adsorption behavior for ammonium. International Journal of Biological Macromolecules, 166 (2021) 268-276.
2.Zheng, Y. and A. Wang, Evaluation of ammonium removal using a chitosan-g-poly (acrylic acid)/rectorite hydrogel composite. Journal of Hazardous Materials, 171 (2009) 671-677.
3.唐存宏, 工業廢水氨氮處理概述. 工業廢水氨氮處理概述, (2016).
4.Ahmed, E.M., Hydrogel: Preparation, characterization, and applications: A review. Journal of Advanced Research, 6 (2015) 105-121.
5.Qiang, J., Z. Zhou, K. Wang, Z. Qiu, H. Zhi, Y. Yuan, Y. Zhang, Y. Jiang, X. Zhao, Z. Wang, and Q. Wang, Coupling ammonia nitrogen adsorption and regeneration unit with a high-load anoxic/aerobic process to achieve rapid and efficient pollutants removal for wastewater treatment. Water Research, 170 (2020) 115280.
6.張芳淑, 廢水氨氮處理與節水政策之應結合. 廢水氨氮處理與節水政策之應結合, (2013).
7.傅正貴、李玫、許哲彰、王俊元, 創新氨氮廢水資源化. 台灣積體電路製造, (2016).
8.黃懋宸, 生物炭特性與吸附水中氨氮能力關聯性之研究. 交通大學環境工程研究所碩士論文, (2018).9.Christian Fux, M.B., Philipp Huber, Irene Brunner, Hansruedi Siegrist, Biological treatment of ammonium-rich wastewater by partial nitritation and subsequent anaerobic ammonium oxidation (anammox) in a pilot plant. Journal of Biotechnology, 99 (2002) 295-306.
10.J. Carrera, J.A.B., T. Vicent, J. Lafuente, Biological nitrogen removal of high-strength ammonium industrial wastewater with two-sludge system. Water Research, 37 (2003) 4211-4221.
11.Van der Star, W.R., W.R. Abma, D. Blommers, J.-W. Mulder, T. Tokutomi, M. Strous, C. Picioreanu, and M.C. van Loosdrecht, Startup of reactors for anoxic ammonium oxidation: experiences from the first full-scale anammox reactor in Rotterdam. Water research, 41 (2007) 4149-4163.
12.Chen, W.H., Y.H. Wang, and T.H. Hsu, The competitive effect of different chlorination disinfection methods and additional inorganic nitrogen on nitrosamine formation from aromatic and heterocyclic amine-containing pharmaceuticals. Chemosphere, 267 (2021) 128922.
13.Dalsgaard, T., D.E. Canfield, J. Petersen, B. Thamdrup, and J. Acuna-Gonzalez, N2 production by the anammox reaction in the anoxic water column of Golfo Dulce, Costa Rica. Nature, 422 (2003) 606-608.
14.Siegrist, C.F.V.M.I.B.H., Anaerobic ammonium oxidation of ammonium-rich waste streams in fixed-bed reactors. Water Science and Technology, 49 (2004) 77–82.
15.Kliaugaite, D., K. Yasadi, G.J. Euverink, M.F.M. Bijmans, and V. Racys, Electrochemical removal and recovery of humic-like substances from wastewater. Separation and Purification Technology, 108 (2013) 37-44.
16.Hedström, A., Ion exchange of ammonium in zeolites: a literature review. Journal of environmental engineering, 127 (2001) 673-681.
17.Siegrist, H., W. Hunziker, and H. Hofer, Anaerobic digestion of slaughterhouse waste with UF-membrane separation and recycling of permeate after free ammonia stripping. Water Science and Technology, 52 (2005) 531-536.
18.Lin, L., S. Yuan, J. Chen, Z. Xu, and X. Lu, Removal of ammonia nitrogen in wastewater by microwave radiation. Journal of hazardous materials, 161 (2009) 1063-1068.
19.Huang, J., N.R. Kankanamge, C. Chow, D.T. Welsh, T. Li, and P.R. Teasdale, Removing ammonium from water and wastewater using cost-effective adsorbents: A review. Journal of Environmental Sciences, 63 (2018) 174-197.
20.Fux, C., M. Boehler, P. Huber, I. Brunner, and H. Siegrist, Biological treatment of ammonium-rich wastewater by partial nitritation and subsequent anaerobic ammonium oxidation (anammox) in a pilot plant. Journal of Biotechnology, 99 (2002) 295-306.
21.Singh, T. and R. Singhal, Poly(acrylic acid/acrylamide/sodium humate) superabsorbent hydrogels for metal ion/dye adsorption: Effect of sodium humate concentration. Journal of Applied Polymer Science, 125 (2012) 1267-1283.
22.Mosa, A., A. El-Ghamry, and M. Tolba, Biochar-supported natural zeolite composite for recovery and reuse of aqueous phosphate and humate: batch sorption–desorption and bioassay investigations. Environmental Technology & Innovation, 19 (2020) 100807.
23.Sun, Z.M., X.S. Qu, G.F. Wang, S.L. Zheng, and R.L. Frost, Removal characteristics of ammonium nitrogen from wastewater by modified Ca-bentonites. Applied Clay Science, 107 (2015) 46-51.
24.Bernal, M.P. and J.M. Lopez-Real, Natural zeolites and sepiolite as ammonium and ammonia adsorbent materials. Bioresource Technology, 43 (1993) 27-33.
25.Bhatnagar, A. and M. Sillanpää, A review of emerging adsorbents for nitrate removal from water. Chemical Engineering Journal, 168 (2011) 493-504.
26.Delkash, M., B. Ebrazi Bakhshayesh, and H. Kazemian, Using zeolitic adsorbents to cleanup special wastewater streams: A review. Microporous and Mesoporous Materials, 214 (2015) 224-241.
27.Moosavi, S., C.W. Lai, S. Gan, G. Zamiri, O. Akbarzadeh Pivehzhani, and M.R. Johan, Application of Efficient Magnetic Particles and Activated Carbon for Dye Removal from Wastewater. ACS Omega, 5 (2020) 20684-20697.
28.Chen, D., L. Wang, Y. Ma, and W. Yang, Super-adsorbent material based on functional polymer particles with a multilevel porous structure. NPG Asia Materials, 8 (2016) e301-e301.
29.Gendy, E.A., D.T. Oyekunle, J. Ali, J. Ifthikar, A. El-Motaleb Mosad Ramadan, and Z. Chen, High-performance removal of radionuclides by porous organic frameworks from the aquatic environment: A review. Journal of Environmental Radioactivity, 238-239 (2021) 106710.
30.Wu, M.-X. and Y.-W. Yang, Applications of covalent organic frameworks (COFs): From gas storage and separation to drug delivery. Chinese Chemical Letters, 28 (2017) 1135-1143.
31.Ren, Z., B. Jia, G. Zhang, X. Fu, Z. Wang, P. Wang, and L. Lv, Study on adsorption of ammonia nitrogen by iron-loaded activated carbon from low temperature wastewater. Chemosphere, 262 (2021) 127895.
32.Binkley, D., Ion Exchange Resin Bags: Factors Affecting Estimates of Nitrogen Availability. Soil Science Society of America Journal, 48 (1984) 1181-1184.
33.Huang, H., X. Xiao, B. Yan, and L. Yang, Ammonium removal from aqueous solutions by using natural Chinese (Chende) zeolite as adsorbent. Journal of Hazardous Materials, 175 (2010) 247-252.
34.Zheng, Y. and A. Wang, Preparation and Ammonium Adsorption Properties of Biotite-Based Hydrogel Composites. Industrial & Engineering Chemistry Research, 49 (2010) 6034-6041.
35.Li, I.C., Y.-H. Chen, and Y.-C. Chen, Sodium alginate-g-poly(sodium acrylate) hydrogel for the adsorption–desorption of ammonium nitrogen from aqueous solution. Journal of Water Process Engineering, 49 (2022) 102999.
36.Dąbrowski, A., Adsorption — from theory to practice. Advances in Colloid and Interface Science, 93 (2001) 135-224.
37.Rouquerol, J., F. Rouquerol, P. Llewellyn, G. Maurin, and K.S. Sing, Adsorption by powders and porous solids: principles, methodology and applications. (2013) Academic press.
38.Adeleke, O.A., M.R. Saphira, Z. Daud, N. Ismail, A. Ahsan, N.A. Ab Aziz, A. Al-Gheethi, V. Kumar, A. Fadilat, and N. Apandi, Principles and mechanism of adsorption for the effective treatment of palm oil mill effluent for water reuse, in Nanotechnology in Water and Wastewater Treatment. (2019) 1-33.
39.Gürses, A., K. Güneş, and E. Şahin, Chapter 5 - Removal of dyes and pigments from industrial effluents, in Green Chemistry and Water Remediation: Research and Applications. (2021) 135-187.
40.Sabzehmeidani, M.M., S. Mahnaee, M. Ghaedi, H. Heidari, and V.A. Roy, Carbon based materials: A review of adsorbents for inorganic and organic compounds. Materials Advances, 2 (2021) 598-627.
41.Sineva, A., Chapter 6 - Adsorption of Synthetic Surfactants from Aqueous Solutions on Natural Adsorbents, in The Role of Colloidal Systems in Environmental Protection. (2014) 143-171.
42.Moja, T.N., S.B. Mishra, and A.K. Mishra, 10 - Conductive polymer-based nanocomposites for the removal of hexavalent chromium and trivalent arsenic from wastewater solution, in Natural Polymers-Based Green Adsorbents for Water Treatment. (2021) 243-266.
43.San Miguel, G., S.D. Lambert, and N.J. Graham, A practical review of the performance of organic and inorganic adsorbents for the treatment of contaminated waters. Journal of Chemical Technology & Biotechnology, 81 (2006) 1685-1696.
44.Chakrabortty, S., J. Nayak, and P. Chakraborty, Chapter 13 - Chemical stabilization of oil by elastomizers, in Advances in Oil-Water Separation. (2022) 233-248.
45.Wong, S., N. Ngadi, I.M. Inuwa, and O. Hassan, Recent advances in applications of activated carbon from biowaste for wastewater treatment: A short review. Journal of Cleaner Production, 175 (2018) 361-375.
46.Singh, T. and R. Singhal, Poly (acrylic acid/acrylamide/sodium humate) superabsorbent hydrogels for metal ion/dye adsorption: Effect of sodium humate concentration. Journal of applied polymer science, 125 (2012) 1267-1283.
47.Rokhade, A.P., S.A. Agnihotri, S.A. Patil, N.N. Mallikarjuna, P.V. Kulkarni, and T.M. Aminabhavi, Semi-interpenetrating polymer network microspheres of gelatin and sodium carboxymethyl cellulose for controlled release of ketorolac tromethamine. Carbohydrate Polymers, 65 (2006) 243-252.
48.Karadağ, E., D. Saraydın, Y. Isikver, and O. Güven, Swelling studies of copolymeric acrylamide/crotonic acid hydrogels as carriers for agricultural uses. Polymers for Advanced Technologies, 11 (2000) 59-68.
49.Kenawy, E.-R., M. Azaam, and E. El-nshar, Sodium alginate-g-poly(acrylic acid-co-2-hydroxyethyl methacrylate)/montmorillonite superabsorbent composite: Preparation, swelling investigation and its application as a slow-release fertilizer. Arabian Journal of Chemistry, 12 (2017).
50.Liu, M., R. Liang, F. Zhan, Z. Liu, and A. Niu, Synthesis of a slow-release and superabsorbent nitrogen fertilizer and its properties. Polymers for Advanced Technologies, 17 (2006) 430-438.
51.Chen, X., B.D. Martin, T.K. Neubauer, R.J. Linhardt, J.S. Dordick, and D.G. Rethwisch, Enzymatic and chemoenzymatic approaches to synthesis of sugar-based polymer and hydrogels. Carbohydrate Polymers, 28 (1995) 15-21.
52.Bhattacharyya, R. and S. Ray, Adsorption of industrial dyes by semi-IPN hydrogels of Acrylic copolymers and sodium alginate. Journal of Industrial and Engineering Chemistry, 22 (2015) 92-102.
53.Sharma, G., M. Naushad, A. Kumar, S. Rana, S. Sharma, A. Bhatnagar, F. Stadler, A. Ghfar, and M. Khan, Efficient removal of coomassie brilliant blue R-250 dye using starch/poly(alginic acid- cl -acrylamide) nanohydrogel. Process Safety and Environmental Protection, 109 (2017).
54.Wang, W. and A. Wang, Synthesis, Swelling Behaviors, and Slow-Release Characteristics of a Guar Gum-g-Poly(sodium acrylate)/Sodium Humate Superabsorbent. Journal of Applied Polymer Science, 112 (2009) 2102-2111.
55.Kabiri, K., H. Omidian, M.J. Zohuriaan-Mehr, and S. Doroudiani, Superabsorbent hydrogel composites and nanocomposites: A review. Polymer Composites, 32 (2011) 277-289.
56.Ba-Abbad, M.M., E. Mahmoudi, A. Benamor, and A.W. Mohammad, Chapter 10 - Nanocomposite material-based catalyst, adsorbent, and membranes for petroleum wastewater treatment, in Petroleum Industry Wastewater. (2022) 147-160.
57.Singhon, R., J. Husson, M. Knorr, B. Lakard, and M. Euvrard, Adsorption of Ni(II) ions on colloidal hybrid organic–inorganic silica composites. Colloids and Surfaces B: Biointerfaces, 93 (2012) 1-7.
58.Thakur, S., S. Pandey, and O.A. Arotiba, Development of a sodium alginate-based organic/inorganic superabsorbent composite hydrogel for adsorption of methylene blue. Carbohydrate Polymers, 153 (2016) 34-46.
59.Gendy, E.A., D.T. Oyekunle, J. Ifthikar, A. Jawad, and Z. Chen, A review on the adsorption mechanism of different organic contaminants by covalent organic framework (COF) from the aquatic environment. Environmental Science and Pollution Research, 29 (2022) 32566-32593.
60.Chung, W.-T., I.M.A. Mekhemer, M.G. Mohamed, A.M. Elewa, A.F.M. El-Mahdy, H.-H. Chou, S.-W. Kuo, and K.C.W. Wu, Recent advances in metal/covalent organic frameworks based materials: Their synthesis, structure design and potential applications for hydrogen production. Coordination Chemistry Reviews, 483 (2023) 215066.
61.Segura, J.L., M.J. Mancheño, and F. Zamora, Covalent organic frameworks based on Schiff-base chemistry: synthesis, properties and potential applications. Chemical Society Reviews, 45 (2016) 5635-5671.
62.Li, Y., W. Chen, G. Xing, D. Jiang, and L. Chen, New synthetic strategies toward covalent organic frameworks. Chemical Society Reviews, 49 (2020) 2852-2868.
63.Lohse, M.S. and T. Bein, Covalent organic frameworks: structures, synthesis, and applications. Advanced Functional Materials, 28 (2018) 1705553.
64.Sasmal, H.S., A. Kumar Mahato, P. Majumder, and R. Banerjee, Landscaping Covalent Organic Framework Nanomorphologies. Journal of the American Chemical Society, 144 (2022) 11482-11498.
65.Côté, A.P., A.I. Benin, N.W. Ockwig, M. O'Keeffe, A.J. Matzger, and O.M. Yaghi, Porous, Crystalline, Covalent Organic Frameworks. Science, 310 (2005) 1166-1170.
66.El-Kaderi, H.M., J.R. Hunt, J.L. Mendoza-Cortés, A.P. Côté, R.E. Taylor, M. O'Keeffe, and O.M. Yaghi, Designed Synthesis of 3D Covalent Organic Frameworks. Science, 316 (2007) 268-272.
67.Sharma, R.K., P. Yadav, M. Yadav, R. Gupta, P. Rana, A. Srivastava, R. Zbořil, R.S. Varma, M. Antonietti, and M.B. Gawande, Recent development of covalent organic frameworks (COFs): synthesis and catalytic (organic-electro-photo) applications. Materials Horizons, 7 (2020) 411-454.
68.Côté, A.P., H.M. El-Kaderi, H. Furukawa, J.R. Hunt, and O.M. Yaghi, Reticular Synthesis of Microporous and Mesoporous 2D Covalent Organic Frameworks. Journal of the American Chemical Society, 129 (2007) 12914-12915.
69.Ding, S.-Y. and W. Wang, Covalent organic frameworks (COFs): from design to applications. Chemical Society Reviews, 42 (2013) 548-568.
70.Feng, X., X. Ding, and D. Jiang, Covalent organic frameworks. Chemical Society Reviews, 41 (2012) 6010-6022.
71.Chen, L., Y. Yang, and D. Jiang, CMPs as Scaffolds for Constructing Porous Catalytic Frameworks: A Built-in Heterogeneous Catalyst with High Activity and Selectivity Based on Nanoporous Metalloporphyrin Polymers. Journal of the American Chemical Society, 132 (2010) 9138-9143.
72.Spitler, E.L. and W.R. Dichtel, Lewis acid-catalysed formation of two-dimensional phthalocyanine covalent organic frameworks. Nature Chemistry, 2 (2010) 672-677.
73.Xiang, Z. and D. Cao, Porous covalent–organic materials: synthesis, clean energy application and design. Journal of Materials Chemistry A, 1 (2013) 2691-2718.
74.Uribe-Romo, F.J., J.R. Hunt, H. Furukawa, C. Klöck, M. O’Keeffe, and O.M. Yaghi, A Crystalline Imine-Linked 3-D Porous Covalent Organic Framework. Journal of the American Chemical Society, 131 (2009) 4570-4571.
75.Uribe-Romo, F.J., C.J. Doonan, H. Furukawa, K. Oisaki, and O.M. Yaghi, Crystalline Covalent Organic Frameworks with Hydrazone Linkages. Journal of the American Chemical Society, 133 (2011) 11478-11481.
76.Weber, J., Q. Su, M. Antonietti, and A. Thomas, Exploring Polymers of Intrinsic Microporosity – Microporous, Soluble Polyamide and Polyimide. Macromolecular Rapid Communications, 28 (2007) 1871-1876.
77.Luo, Y., B. Li, L. Liang, and B. Tan, Synthesis of cost-effective porous polyimides and their gas storage properties. Chemical Communications, 47 (2011) 7704-7706.
78.Reich, T.E., K.T. Jackson, S. Li, P. Jena, and H.M. El-Kaderi, Synthesis and characterization of highly porous borazine-linked polymers and their performance in hydrogen storage application. Journal of Materials Chemistry, 21 (2011) 10629-10632.
79.Wang, X., K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, and M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nature Materials, 8 (2009) 76-80.
80.Jiang, J.-X., F. Su, H. Niu, C.D. Wood, N.L. Campbell, Y.Z. Khimyak, and A.I. Cooper, Conjugated microporous poly(phenylene butadiynylene)s. Chemical Communications, (2008) 486-488.
81.Yuan, S., S. Kirklin, B. Dorney, D.-J. Liu, and L. Yu, Nanoporous Polymers Containing Stereocontorted Cores for Hydrogen Storage. Macromolecules, 42 (2009) 1554-1559.
82.Nicolaou, K.C., P.G. Bulger, and D. Sarlah, Palladium-Catalyzed Cross-Coupling Reactions in Total Synthesis. Angewandte Chemie International Edition, 44 (2005) 4442-4489.
83.Holst, J.R., E. Stöckel, D.J. Adams, and A.I. Cooper, High Surface Area Networks from Tetrahedral Monomers: Metal-Catalyzed Coupling, Thermal Polymerization, and “Click” Chemistry. Macromolecules, 43 (2010) 8531-8538.
84.Ben, T., H. Ren, S. Ma, D. Cao, J. Lan, X. Jing, W. Wang, J. Xu, F. Deng, J.M. Simmons, S. Qiu, and G. Zhu, Targeted Synthesis of a Porous Aromatic Framework with High Stability and Exceptionally High Surface Area. Angewandte Chemie International Edition, 48 (2009) 9457-9460.
85.Ben, T., C. Pei, D. Zhang, J. Xu, F. Deng, X. Jing, and S. Qiu, Gas storage in porous aromatic frameworks (PAFs). Energy & Environmental Science, 4 (2011) 3991-3999.
86.Rose, M., W. Böhlmann, M. Sabo, and S. Kaskel, Element–organic frameworks with high permanent porosity. Chemical Communications, (2008) 2462-2464.
87.Bojdys, M.J., J. Jeromenok, A. Thomas, and M. Antonietti, Rational Extension of the Family of Layered, Covalent, Triazine-Based Frameworks with Regular Porosity. Advanced Materials, 22 (2010) 2202-2205.
88.Ren, H., T. Ben, E. Wang, X. Jing, M. Xue, B. Liu, Y. Cui, S. Qiu, and G. Zhu, Targeted synthesis of a 3D porous aromatic framework for selective sorption of benzene. Chemical Communications, 46 (2010) 291-293.
89.Korotcenkov, G. and V.P. Tolstoy, Current Trends in Nanomaterials for Metal Oxide-Based Conductometric Gas Sensors: Advantages and Limitations—Part 2: Porous 2D Nanomaterials. Nanomaterials, 13 (2023) 237.
90.Liu, M., Y. Liu, J. Dong, Y. Bai, W. Gao, S. Shang, X. Wang, J. Kuang, C. Du, and Y. Zou, Two-dimensional covalent organic framework films prepared on various substrates through vapor induced conversion. Nature Communications, 13 (2022) 1411.
91.Chen, Y., L. Chen, C. Lu, L. Wang, L. Dong, C. Zhou, and X. Huang, A COF-coated polyamide membrane fabricated by vapor-assisted conversion for water-in-oil emulsion separation. New Journal of Chemistry, 46 (2022) 22889-22894.
92.Xu, L., X. Zhou, Y. Yu, W.Q. Tian, J. Ma, and S. Lei, Surface-confined crystalline two-dimensional covalent organic frameworks via on-surface schiff-base coupling. ACS nano, 7 (2013) 8066-8073.
93.Li, G., B. Zhang, J. Yan, and Z. Wang, Micro-and mesoporous poly (Schiff-base) s constructed from different building blocks and their adsorption behaviors towards organic vapors and CO 2 gas. Journal of Materials Chemistry A, 2 (2014) 18881-18888.
94.Wei, D., A. Zhang, Y. Ai, and X. Wang, Adsorption Properties of Hydrated Cr3+ Ions on Schiff-base Covalent Organic Frameworks: A DFT Study. Chemistry – An Asian Journal, 15 (2020) 1140-1146.
95.Kuhn, P., M. Antonietti, and A. Thomas, Porous, Covalent Triazine-Based Frameworks Prepared by Ionothermal Synthesis. Angewandte Chemie International Edition, 47 (2008) 3450-3453.
96.Maschita, J., T. Banerjee, G. Savasci, F. Haase, C. Ochsenfeld, and B.V. Lotsch, Ionothermal Synthesis of Imide-Linked Covalent Organic Frameworks. Angewandte Chemie International Edition, 59 (2020) 15750-15758.
97.Kappe, C.O., Controlled Microwave Heating in Modern Organic Synthesis. Angewandte Chemie International Edition, 43 (2004) 6250-6284.
98.Ritchie, L.K., A. Trewin, A. Reguera-Galan, T. Hasell, and A.I. Cooper, Synthesis of COF-5 using microwave irradiation and conventional solvothermal routes. Microporous and Mesoporous Materials, 132 (2010) 132-136.
99.Yang, S.-T., J. Kim, H.-Y. Cho, S. Kim, and W.-S. Ahn, Facile synthesis of covalent organic frameworks COF-1 and COF-5 by sonochemical method. RSC Advances, 2 (2012) 10179-10181.
100.Stock, N. and S. Biswas, Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chemical Reviews, 112 (2012) 933-969.
101.Biswal, B.P., S. Chandra, S. Kandambeth, B. Lukose, T. Heine, and R. Banerjee, Mechanochemical Synthesis of Chemically Stable Isoreticular Covalent Organic Frameworks. Journal of the American Chemical Society, 135 (2013) 5328-5331.
102.Kim, S. and H.C. Choi, Light-promoted synthesis of highly-conjugated crystalline covalent organic framework. Communications Chemistry, 2 (2019) 60.
103.Song, Y., Q. Sun, B. Aguila, and S. Ma, Opportunities of Covalent Organic Frameworks for Advanced Applications. Advanced Science, 6 (2019) 1801410.
104.Keller, N. and T. Bein, Optoelectronic processes in covalent organic frameworks. Chemical Society Reviews, 50 (2021) 1813-1845.
105.Mandal, A.K., J. Mahmood, and J.-B. Baek, Two-Dimensional Covalent Organic Frameworks for Optoelectronics and Energy Storage. ChemNanoMat, 3 (2017) 373-391.
106.Yadav, V.K., S.H. Mir, V. Mishra, T.G. Gopakumar, and J.K. Singh, A simple molecular design for tunable two-dimensional imine covalent organic frameworks for optoelectronic applications. Physical Chemistry Chemical Physics, 22 (2020) 21360-21368.
107.Xia, L. and Q. Liu, Lithium doping on covalent organic framework-320 for enhancing hydrogen storage at ambient temperature. Journal of Solid State Chemistry, 244 (2016) 1-5.
108.Wei, H., S. Chai, N. Hu, Z. Yang, L. Wei, and L. Wang, The microwave-assisted solvothermal synthesis of a crystalline two-dimensional covalent organic framework with high CO2 capacity. Chemical Communications, 51 (2015) 12178-12181.
109.Yang, Z. and D. Cao, Effect of Li Doping on Diffusion and Separation of Hydrogen and Methane in Covalent Organic Frameworks. The Journal of Physical Chemistry C, 116 (2012) 12591-12598.
110.Zhu, L. and Y.-B. Zhang, Crystallization of covalent organic frameworks for gas storage applications. Molecules, 22 (2017) 1149.
111.Huang, N., X. Chen, R. Krishna, and D. Jiang, Two-Dimensional Covalent Organic Frameworks for Carbon Dioxide Capture through Channel-Wall Functionalization. Angewandte Chemie International Edition, 54 (2015) 2986-2990.
112.Liu, X., D. Huang, C. Lai, G. Zeng, L. Qin, H. Wang, H. Yi, B. Li, S. Liu, M. Zhang, R. Deng, Y. Fu, L. Li, W. Xue, and S. Chen, Recent advances in covalent organic frameworks (COFs) as a smart sensing material. Chemical Society Reviews, 48 (2019) 5266-5302.
113.Wang, P., M. Kang, S. Sun, Q. Liu, Z. Zhang, and S. Fang, Imine-Linked Covalent Organic Framework on Surface for Biosensor. Chinese Journal of Chemistry, 32 (2014) 838-843.
114.Dalapati, S., S. Jin, J. Gao, Y. Xu, A. Nagai, and D. Jiang, An Azine-Linked Covalent Organic Framework. Journal of the American Chemical Society, 135 (2013) 17310-17313.
115.Wang, X., D.A. Lewis, G. Wang, T. Meng, S. Zhou, Y. Zhu, D. Hu, S. Gao, and G. Zhang, Covalent Organic Frameworks as a Biomacromolecule Immobilization Platform for Biomedical and Related Applications. Advanced Therapeutics, 5 (2022) 2200053.
116.Guo, H., Y. Liu, N. Wu, L. Sun, and W. Yang, Covalent Organic Frameworks (COFs): A Necessary Choice For Drug Delivery. ChemistrySelect, 7 (2022) e202202538.
117.Bai, L., S.Z.F. Phua, W.Q. Lim, A. Jana, Z. Luo, H.P. Tham, L. Zhao, Q. Gao, and Y. Zhao, Nanoscale covalent organic frameworks as smart carriers for drug delivery. Chemical Communications, 52 (2016) 4128-4131.
118.Yusran, Y., H. Li, X. Guan, Q. Fang, and S. Qiu, Covalent Organic Frameworks for Catalysis. EnergyChem, 2 (2020) 100035.
119.Ding, S.-Y., J. Gao, Q. Wang, Y. Zhang, W.-G. Song, C.-Y. Su, and W. Wang, Construction of Covalent Organic Framework for Catalysis: Pd/COF-LZU1 in Suzuki–Miyaura Coupling Reaction. Journal of the American Chemical Society, 133 (2011) 19816-19822.
120.Liu, J., N. Wang, and L. Ma, Recent Advances in Covalent Organic Frameworks for Catalysis. Chemistry – An Asian Journal, 15 (2020) 338-351.
121.Guo, J. and D. Jiang, Covalent Organic Frameworks for Heterogeneous Catalysis: Principle, Current Status, and Challenges. ACS Central Science, 6 (2020) 869-879.
122.Gendy, E.A., J. Ifthikar, J. Ali, D.T. Oyekunle, Z. Elkhlifia, I.I. Shahib, A.I. Khodair, and Z. Chen, Removal of heavy metals by covalent organic frameworks (COFs): A review on its mechanism and adsorption properties. Journal of Environmental Chemical Engineering, 9 (2021) 105687.
123.Bukhari, S.N.A., N. Ahmed, M.W. Amjad, M.A. Hussain, M.A. Elsherif, H. Ejaz, and N.H. Alotaibi, Covalent Organic Frameworks (COFs) as Multi-Target Multifunctional Frameworks. Polymers, 15 (2023) 267.
124.Wang, J. and S. Zhuang, Covalent organic frameworks (COFs) for environmental applications. Coordination Chemistry Reviews, 400 (2019) 213046.
125.Ding, S.-Y., M. Dong, Y.-W. Wang, Y.-T. Chen, H.-Z. Wang, C.-Y. Su, and W. Wang, Thioether-Based Fluorescent Covalent Organic Framework for Selective Detection and Facile Removal of Mercury(II). Journal of the American Chemical Society, 138 (2016) 3031-3037.
126.Mei, D., L. Liu, and B. Yan, Adsorption of uranium (VI) by metal-organic frameworks and covalent-organic frameworks from water. Coordination Chemistry Reviews, 475 (2023) 214917.
127.Mellah, A., S.P.S. Fernandes, R. Rodríguez, J. Otero, J. Paz, J. Cruces, D.D. Medina, H. Djamila, B. Espiña, and L.M. Salonen, Adsorption of Pharmaceutical Pollutants from Water Using Covalent Organic Frameworks. Chemistry – A European Journal, 24 (2018) 10601-10605.
128.El-Mahdy, A.F., M.B. Zakaria, H.-X. Wang, T. Chen, Y. Yamauchi, and S.-W. Kuo, Heteroporous bifluorenylidene-based covalent organic frameworks displaying exceptional dye adsorption behavior and high energy storage. Journal of Materials Chemistry A, 8 (2020) 25148-25155.
129.Yang, C.-H., J.-S. Chang, and D.-J. Lee, Chemically stable covalent organic framework as adsorbent from aqueous solution: A mini-review. Journal of the Taiwan Institute of Chemical Engineers, 110 (2020) 79-91.
130.Li, G., J. Ye, Q. Fang, and F. Liu, Amide-based covalent organic frameworks materials for efficient and recyclable removal of heavy metal lead (II). Chemical Engineering Journal, 370 (2019) 822-830.
131.Sun, Q., B. Aguila, J. Perman, L.D. Earl, C.W. Abney, Y. Cheng, H. Wei, N. Nguyen, L. Wojtas, and S. Ma, Postsynthetically modified covalent organic frameworks for efficient and effective mercury removal. Journal of the American Chemical Society, 139 (2017) 2786-2793.
132.Huang, N., L. Zhai, H. Xu, and D. Jiang, Stable covalent organic frameworks for exceptional mercury removal from aqueous solutions. Journal of the American Chemical Society, 139 (2017) 2428-2434.
133.Lu, Z., Y. Liu, X. Liu, S. Lu, Y. Li, S. Yang, Y. Qin, L. Zheng, and H. Zhang, A hollow microshuttle-shaped capsule covalent organic framework for protein adsorption. Journal of Materials Chemistry B, 7 (2019) 1469-1474.
134.Wang, R.-Q., X.-B. Wei, and Y.-Q. Feng, β-Cyclodextrin Covalent Organic Framework for Selective Molecular Adsorption. Chemistry – A European Journal, 24 (2018) 10979-10983.
135.Lu, Q., Y. Ma, H. Li, X. Guan, Y. Yusran, M. Xue, Q. Fang, Y. Yan, S. Qiu, and V. Valtchev, Postsynthetic Functionalization of Three-Dimensional Covalent Organic Frameworks for Selective Extraction of Lanthanide Ions. Angewandte Chemie International Edition, 57 (2018) 6042-6048.
136.Zhang, W., Y. Zhang, G. Zhang, J. Liu, W. Zhao, W. Zhang, K. Hu, F. Xie, and S. Zhang, Facile preparation of a cationic COF functionalized magnetic nanoparticle and its use for the determination of nine hydroxylated polycyclic aromatic hydrocarbons in smokers’ urine. Analyst, 144 (2019) 5829-5841.
137.Jiang, Y., C. Liu, and A. Huang, EDTA-Functionalized Covalent Organic Framework for the Removal of Heavy-Metal Ions. ACS Applied Materials & Interfaces, 11 (2019) 32186-32191.
138.Li, Z.D., H.Q. Zhang, X.H. Xiong, and F. Luo, U(VI) adsorption onto covalent organic frameworks-TpPa-1. Journal of Solid State Chemistry, 277 (2019) 484-492.
139.Xiong, X.H., Z.W. Yu, L.L. Gong, Y. Tao, Z. Gao, L. Wang, W.H. Yin, L.X. Yang, and F. Luo, Ammoniating covalent organic framework (COF) for high‐performance and selective extraction of toxic and radioactive uranium ions. Advanced Science, 6 (2019) 1900547.
140.Hu, K., Y. Lv, F. Ye, T. Chen, and S. Zhao, Boric-acid-functionalized covalent organic framework for specific enrichment and direct detection of cis-diol-containing compounds by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Analytical chemistry, 91 (2019) 6353-6362.
141.He, L., S. Liu, L. Chen, X. Dai, J. Li, M. Zhang, F. Ma, C. Zhang, Z. Yang, and R. Zhou, Mechanism unravelling for ultrafast and selective 99 TcO4− uptake by a radiation-resistant cationic covalent organic framework: a combined radiological experiment and molecular dynamics simulation study. Chemical science, 10 (2019) 4293-4305.
142.Li, Y., C. Wang, S. Ma, H. Zhang, J. Ou, Y. Wei, and M. Ye, Fabrication of hydrazone-linked covalent organic frameworks using alkyl amine as building block for high adsorption capacity of metal ions. ACS Applied Materials and Interfaces, 11 (2019) 11706-11714.
143.Wen, R., Y. Li, M. Zhang, X. Guo, X. Li, X. Li, J. Han, S. Hu, W. Tan, L. Ma, and S. Li, Graphene-synergized 2D covalent organic framework for adsorption: A mutual promotion strategy to achieve stabilization and functionalization simultaneously. Journal of Hazardous Materials, 358 (2018) 273-285.
144.Wang, W., S. Deng, L. Ren, D. Li, W. Wang, M. Vakili, B. Wang, J. Huang, Y. Wang, and G. Yu, Stable Covalent Organic Frameworks as Efficient Adsorbents for High and Selective Removal of an Aryl-Organophosphorus Flame Retardant from Water. ACS Applied Materials & Interfaces, 10 (2018) 30265-30272.
145.Sun, Q., B. Aguila, L.D. Earl, C.W. Abney, L. Wojtas, P.K. Thallapally, and S. Ma, Covalent organic frameworks as a decorating platform for utilization and affinity enhancement of chelating sites for radionuclide sequestration. Advanced Materials, 30 (2018) 1705479.
146.Liu, Z., H. Wang, J. Ou, L. Chen, and M. Ye, Construction of hierarchically porous monoliths from covalent organic frameworks (COFs) and their application for bisphenol A removal. Journal of Hazardous Materials, 355 (2018) 145-153.
147.Zhou, Z., W. Zhong, K. Cui, Z. Zhuang, L. Li, L. Li, J. Bi, and Y. Yu, A covalent organic framework bearing thioether pendant arms for selective detection and recovery of Au from ultra-low concentration aqueous solution. Chemical communications, 54 (2018) 9977-9980.
148.Tu, Y., P. Feng, Y. Ren, Z. Cao, R. Wang, and Z. Xu, Adsorption of ammonia nitrogen on lignite and its influence on coal water slurry preparation. Fuel, 238 (2019) 34-43.
149.Gui, B., G. Lin, H. Ding, C. Gao, A. Mal, and C. Wang, Three-Dimensional Covalent Organic Frameworks: From Topology Design to Applications. Accounts of Chemical Research, 53 (2020) 2225-2234.
150.Coulson, D.-R., L. Satek, and S. Grim, Tetrakis (triphenylphosphine) palladium (0). Inorganic Syntheses, 13 (1972) 121-124.
151.Mondal, B., P. Bhandari, and P.S. Mukherjee, Nucleation of Tiny Silver Nanoparticles by Using a Tetrafacial Organic Molecular Barrel: Potential Use in Visible-Light-Triggered Photocatalysis. Chemistry – A European Journal, 26 (2020) 15007-15015.
152.Bhattacharyya, R. and S.K. Ray, Adsorption of industrial dyes by semi-IPN hydrogels of Acrylic copolymers and sodium alginate. Journal of Industrial and Engineering Chemistry, 22 (2015) 92-102.
153.Development, U.S.E.P.A.M., Q.A.R. Laboratory, N.E.R. Center, O.M. Development, Q.A.R. Laboratory, and U.S.E.P.A.O.o.T. Transfer, Methods for chemical analysis of water and wastes. (1974) US Environmental Protection Agency, Office of Technology Transfer.
154.Li, Y., C.-X. Yang, H.-L. Qian, X. Zhao, and X.-P. Yan, Carboxyl-Functionalized Covalent Organic Frameworks for the Adsorption and Removal of Triphenylmethane Dyes. ACS Applied Nano Materials, 2 (2019) 7290-7298.
155.Liu, S., L. Yang, T. Quan, L. Deng, D. Wang, K. Zhang, L. Wang, J. Wang, F. Ke, X. Li, and D. Gao, Glutathione-functionalized highly crystalline fluorescent covalent organic framework as a fluorescence-sensing and adsorption double platform for cationic dyes. Separation and Purification Technology, 288 (2022) 120673.
156.Dong, B., W.-J. Wang, S.-C. Xi, D.-Y. Wang, and R. Wang, A Carboxyl-Functionalized Covalent Organic Framework Synthesized in a Deep Eutectic Solvent for Dye Adsorption. Chemistry – A European Journal, 27 (2021) 2692-2698.
157.Wu, X., B. Wang, Z. Yang, and L. Chen, Novel imine-linked covalent organic frameworks: preparation, characterization and application. Journal of Materials Chemistry A, 7 (2019) 5650-5655.
158.Li, J., D. Liu, B. Li, J. Wang, S. Han, L. Liu, and H. Wei, A bio-inspired nacre-like layered hybrid structure of calcium carbonate under the control of carboxyl graphene. CrystEngComm, 17 (2015) 520-525.
159.Toda, A., C. Tomita, M. Hikosaka, and Y. Saruyama, Kinetics of irreversible melting of polyethylene crystals revealed by temperature modulated DSC1Presented in part at the 25th Conference of the North American Thermal Analysis Society, McLean, Virginia, September 7–9, 1997.1. Thermochimica Acta, 324 (1998) 95-107.
160.Li, X., Q. Hou, W. Huang, H.-S. Xu, X. Wang, W. Yu, R. Li, K. Zhang, L. Wang, Z. Chen, K. Xie, and K.P. Loh, Solution-Processable Covalent Organic Framework Electrolytes for All-Solid-State Li–Organic Batteries. ACS Energy Letters, 5 (2020) 3498-3506.
161.Hermans, J.J., K. Keune, A. van Loon, and P.D. Iedema, An infrared spectroscopic study of the nature of zinc carboxylates in oil paintings. Journal of Analytical Atomic Spectrometry, 30 (2015) 1600-1608.
162.Han, X.-H., R.-R. Liang, Z.-B. Zhou, Q.-Y. Qi, and X. Zhao, Converting an amorphous covalent organic polymer to a crystalline covalent organic framework mediated by a repairing agent. Chemical Communications, 59 (2023) 2461-2464.
163.Eshed, M., S. Pol, A. Gedanken, and M. Balasubramanian, Zirconium nanoparticles prepared by the reduction of zirconium oxide using the RAPET method. Beilstein Journal of Nanotechnology, 2 (2011) 198-203.
164.Li, Z., T. He, Y. Gong, and D. Jiang, Covalent organic frameworks: pore design and interface engineering. Accounts of Chemical Research, 53 (2020) 1672-1685.
165.Hwang, N. and A.R. Barron, BET surface area analysis of nanoparticles. The connexions project, (2011) 1-11.
166.Brião, G.d.V., M.G.C. da Silva, M.G.A. Vieira, and K.H. Chu, Correlation of type II adsorption isotherms of water contaminants using modified BET equations. Colloid and Interface Science Communications, 46 (2022) 100557.
167.Borthakur, P., P.K. Boruah, N. Hussain, B. Sharma, M.R. Das, S. Matić, D. Řeha, and B. Minofar, Experimental and Molecular Dynamics Simulation Study of Specific Ion Effect on the Graphene Oxide Surface and Investigation of the Influence on Reactive Extraction of Model Dye Molecule at Water–Organic Interface. The Journal of Physical Chemistry C, 120 (2016) 14088-14100.
168.Liu, W.-J., F.-X. Zeng, H. Jiang, and X.-S. Zhang, Preparation of high adsorption capacity bio-chars from waste biomass. Bioresource Technology, 102 (2011) 8247-8252.
169.Inyinbor, A.A., F.A. Adekola, and G.A. Olatunji, Kinetics, isotherms and thermodynamic modeling of liquid phase adsorption of Rhodamine B dye onto Raphia hookerie fruit epicarp. Water Resources and Industry, 15 (2016) 14-27.
170.Kumar, A., K. Singh, and R. Ahmad Bhat, Selective adsorption of carboxymethylcellulose onto mesoporous silica derived from de-oiled mustard cake. Materials Today: Proceedings, 48 (2022) 610-615.
171.Wang, H., T. Wang, R. Ma, K. Wu, H. Li, B. Feng, C. Li, and Y. Shen, Facile synthesis of sulfonated covalent organic framework for the adsorption of heavy metal ions. Journal of the Taiwan Institute of Chemical Engineers, 112 (2020) 122-129.
172.Lagergren, S.K., About the theory of so-called adsorption of soluble substances. Sven. Vetenskapsakad. Handingarl, 24 (1898) 1-39.
173.Ho, Y.S. and G. McKay, Pseudo-second order model for sorption processes. Process Biochemistry, 34 (1999) 451-465.
174.Bu, F., W. Huang, M. Xian, X. Zhang, F. Liang, X. Liu, X. Sun, and D. Feng, Magnetic carboxyl-functionalized covalent organic frameworks for adsorption of quinolones with high capacities, fast kinetics and easy regeneration. Journal of Cleaner Production, 336 (2022) 130485.
175.Zhang, L., Q.-Q. Zheng, S.-J. Xiao, J.-Q. Chen, W. Jiang, W.-R. Cui, G.-P. Yang, R.-P. Liang, and J.-D. Qiu, Covalent organic frameworks constructed by flexible alkyl amines for efficient gold recovery from leaching solution of e-waste. Chemical Engineering Journal, 426 (2021) 131865.
176.Myers, A.L., Thermodynamics of adsorption in porous materials. AIChE Journal, 48 (2002) 145-160.
177.Mardenborough, K., M. Florentino, R. Haxhari, Y.-C. Lin, M. Rafailovich, G. Halada, H.J. Jung, and T. Kim, Influence of NaOH concentration on the decolorization of crystal violet dyed cotton fabric. Environmental Engineering Research, 28 (2023).
178.Junfu, W., Z. Kongyin, J. Zheng, and Z. Huan. Carboxylic acid cation exchange non-woven for enrichment and removal of heavy metal ions in seawater. in 2010 International Conference on Mechanic Automation and Control Engineering. 2010.
179.Xie, X., X. Huang, W. Lin, Y. Chen, X. Lang, Y. Wang, L. Gao, H. Zhu, and J. Chen, Selective Adsorption of Cationic Dyes for Stable Metal–Organic Framework ZJU-48. ACS Omega, 5 (2020) 13595-13600.