[1] N. Yamanaka, R. Kawano, W. Kubo, T. Kitamura, Y. Wada, M. Watanabe, S. Yanagida., “ Ionic liquid crystal as a hole transport layer of dye-sensitized solar cells”, Chem. Commun,6 (2005), pp. 740-742
[2] J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan, G. Luo, “Electrolytes in Dye-Sensitized Solar Cells,”Chem. Rev., 115 (2015), pp. 2136-2173
[3] Y. Cao, Y. Saygili, A. Ummadisingu, J. Teuscher, J. Luo, N. Pellet, F. Giordano, S.M. Zakeeruddin, J.E. Moser, M. Freitag, A. Hagfeldt, “11% efficiency solid-state dye-sensitized solar cells with copper(II/I) hole transport materials,”Nature Commun., 8 (2017), p. 15390
[4] G. Boschloo, A. Hagfeldt, “Characteristics of the Iodide/Triiodide Redox Mediator in Dye-Sensitized Solar Cells,”Acc. Chem. Res., 42 (2009), pp. 1819-1826
[5] J.G. Rowley, B.H. Farnum, S. Ardo, G.J. Meyer, “Iodide Chemistry in Dye-Sensitized Solar Cells: Making and Breaking I−I Bonds for Solar Energy Conversion,”J. Phys. Chem. Lett., 1 (2010), pp. 3132-3140
[6] A.B. Djurišić, F. Liu, A. Mc Ng, Q. Dong, M. Kwong Wong, A. Ng, C. Surya, “Stability issues of the next generation solar cells,”Phys. Status Solidi RRL, 10 (2016), pp. 281-299
[7] R. Kawano, H. Matsui, C. Matsuyama, A. Sato, M. Abu Bin Hasan Susan, N. Tanabe, M. Watanabe, “High performance dye-sensitized solar cells using ionic liquids as their electrolytes,”J. Photochem. Photobiol. A, 164 (2004), pp. 87-92
[8] H. Jin, S. Xin, C. Chuang, W. Li, H. Wang, J. Zhu, H. Xie, T. Zhang, Y. Wan, Z. Qi, W. Yan, Y.R. Lu, T.S. Chan, X. Wu, J.B. Goodenough, H. Ji, X. Duan,“Black phosphorus composites with engineered interfaces for high-rate high-capacity lithium storage,”Science, 370 (2020), pp. 192-197
[9] C. Ji, A.A. Adeleke, L. Yang, B. Wan, H. Gou, Y. Yao, B. Li, Y. Meng, J.S. Smith, V.B. Prakapenka, W. Liu, G. Shen, W.L. Mao, H.K. Mao,“Nitrogen in black phosphorus structure,”Sci. Adv., 6 (2020), Article eaba9206
[10] S.W. Jung, S.H. Ryu, W.J. Shin, Y. Sohn, M. Huh, R.J. Koch, C. Jozwiak, E. Rotenberg, A. Bostwick, K.S. Kim,“Black phosphorus as a bipolar pseudospin semiconductor,”Nat. Mater., 19 (2020), pp. 277-281
[11] X. Zhu, S. Huang, Q. Yu, Y. She, J. Yang, G. Zhou, Q. Li, X. She, J. Deng, H. Li, H. Xu,“In-situ hydroxyl modification of monolayer black phosphorus for stable photocatalytic carbon dioxide conversion,”Appl. Catal. B: Environ., 269 (2020), Article 118760
[12] X. Wang, J. He, J. Li, G. Lu, F. Dong, T. Majima, M. Zhu,“Immobilizing perovskite CsPbBr3 nanocrystals on black phosphorus nanosheets for boosting charge separation and photocatalytic CO2 reduction,”Appl. Catal. B: Environ., 277 (2020), Article 119230
[13] Brittany L. Oliva-Chatelain, Andrew R. Barron, 2008,“An Introduction to Solar Cell ” Technology.
[14] 翁敏航,”太陽能電池:原理、元件、材料、製程與檢測技術”,東華書局,2010。
[15] H. Tsubomura, M. Matsumura, Y. Nomura, T. Amamiya, 1976, “Dye-sensitized zinc oxide/aqueous electrolyte/platinum photocell”, Nature, 261, 402-403.
[16] Russell F. Howe , Michael Gratzel, 1985, “EPR observation of trapped electrons in colloidal titanium dioxide”, J. Phys. Chem., 89 (21), 4495-4499.
[17] B. O'Regan, M. Grätzel, A Low-cost, 1991, “A low-cost, high-efficiency solar cell based on Dye-sensitized colloidal TiO2 Films”, Nature, 353, 737-740.
[18] A. Hagfeldt, M. Grätzel, 2000, “Molecular photovoltaics”, Acc. Chem. Res., 33(5),269-277.
[19] Mohammad K. Nazeeruddin, Filippo De Angelis, SimonaFantacci, AnnabellaSelloni, Guido Viscardi, Paul Liska, Seigo Ito, BesshoTakeru, and Michael Grätzel, 2005, “Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers”, J. Am. Chem. Soc., 127(48), 16835-16847.
[20] Aswani Yella, Hsuan-Wei Lee, Hoi NokTsao, Chenyi Yi, Aravind Kumar Chandir`an, Md.KhajaNazeeruddin, Eric Wei-GuangDiau, Chen-Yu Yeh, Shaik M Zakeeruddin, Michael Grätzel, 2011, “Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency”, 334, 629-634.
[21] 黃建昇,2003,”結晶矽太陽電池發展近況” ,工業材料雜誌,203 期,頁150-155。
[22] 郭明村,2003,”薄膜太陽電池發展近況”,工業材料雜誌, 203期,頁138-142。
[23] 林明獻,2008,”太陽能電池技術入門”,全華圖書出版。
[24] Ulrike Diebold, 2003, “The surface science of titanium dioxide”, surface science reports, 48, pp. 53 ~ 229.
[25] 劉茂煌,2002,”奈米光電池”,工業材料雜誌,203期,頁1~49。
[26] T. Horiuchi, H. Miura, S. Uchida, 2003, “Highly-efficient metal-free organic dyes for dye-sensitized solar cells”, Chem. Commun., 24, 3036-3037.
[27] T. Horiuchi, H. Miura, K. Sumioka, S. Uchida, 2004, “High Efficiency of Dye-Sensitized Solar Cells Based on Metal-Free Indoline Dyes”, Journal of the American Chemical Society, 126(39), 12218-12219.
[28] 薛惟聰,2008,”新型含雙噻吩環戊烷之有機小分子光敏化染料的合成與性質探討”,國立中央大學化學研究所碩士論文。[29] Md. K. Nazeeruddin, S. M. Zakeeruddin, R. Humphry-Baker, M. Jirousek, P. Liska, N. Vlachopoulos, V. Shklover, Christian-H. Fischer, M. Grätzel, 1999, “Acid−Base Equilibria of (2,2‘-Bipyridyl-4,4‘- dicarboxylic acid)ruthenium(II) Complexes and the Effect of Protonation on Charge-Transfer Sensitization of NanocrystallineTitania”, Inorg. Chem., 38(26), 6298-6305.
[30] Michael Grätzel, 2005, “Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells”, Inorganic Chemistry, 44(20), 6841-6851.
[31] A. Mishra, M. K. R. Fischer, P. Bäuerle, 2009, “Metal-Free Organic Dyes for Dye-Sensitized Solar Cells: From Structure: Property Relationships to Design Rules”, Angew. Chem. Int. Ed., 48, 2474-2499.
[32] A. Kay and M. Grätzel, 1996, “Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder”, Solar Energy Materials and Solar Cells, 44, 99-117.
[33] Kristofer Fredin, 2007, “Studies of Charge Transport Processes in Dye-Sensitized Solar Cells”, KTH.
[34] G. Franco, J. Gehring, L. M. Peter, E. A. Ponomarev, I. Uhlendorf, 1998, “Frequency-Resolved Optical Detection of Photoinjected Electrons in Dye-Sensitized Nanocrystalline Photovoltaic Cells”, Journal of Physical Chemistry B, 103(4), 692-698.
[35] B. A. Gregg, F. Pichot, S. Ferrere, C. L. Fields, 2001, “Interfacial Recombination Processes in Dye-Sensitized Solar Cells and Methods To Passivate the Interfaces”, Journal of Physical Chemistry B, 105(7), 1422-1429.
[36] P. Wang, R. H. Baker, J. E. Moser, S. M. Zakeeruddin, M. Grätzel, 2004, “Amphiphilic Polypyridyl Ruthenium Complexes with Substituted 2,2'-Dipyridylamine Ligands for Nanocrystalline Dye-Sensitized Solar Cells”, Chemistry of Materials, 16(17), 3246-3251.
[37] G.R.A. Kumara, S. Kaneko, M. Okuya, K. Tennakone, 2002, “Fabrication of Dye-Sensitized Solar Cells Using Triethylamine Hydrothiocyanate as a CuI Crystal Growth Inhibitor”, Langmuir, 18(26), 10493-10495.
[38] Q. B. Meng, K. Takahashi, X. T. Zhang, I. Sutanto, T. N. Rao, O. Sato, A. Fujishima, 2003, “Fabrication of Dye-Sensitized Solar Cells Using Triethylamine Hydrothiocyanate as a CuI Crystal Growth Inhibitor”, Langmuir, 19(9), 3572-3574.
[39] A. Noda, K. Hayamizu, M. Watanabe, 2001, “Pulsed-Gradient Spin-Echo 1H and 19F NMR Ionic Diffusion Coefficient, Viscosity, and Ionic Conductivity of Non-Chloroaluminate Room-Temperature Ionic Liquids”, Journal of Physical Chemistry B, 105(20), 4603-4610.
[40] K. E. Lee, M. A. Gomez, S. Elouatik, G. P. Demopoulos, "Further Understanding of the Adsorption Mechanism of N719 Sensitizer on Anatase TiO2 Films for DSSC Applications Using Vibrational Spectroscopy and Confocal Raman Imaging," Langmuir 2010, 26, 12, pp. 9575–9583, 2010.
[41] S. E. Koops, B. C. O’Regan, P. R. F. Barnes, R. Durrant, "Parameters Influencing the Efficiency of Electron Injection in Dye-Sensitized Solar Cells," J. Am. Chem. Soc, 131, 13, pp. 4808–4818, 2009.
[42] A. Hauch, A. Georg, 2001, “Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells”, ElectrochimicaActa, 46, 3457-3466.
[43] F. Padinger, C. Brabec, T. Fromherz, J. Hummelen, N. Sariciftci,“Fabrication of large area photovoltaic devices containing various blends of polymer and fullerene derivatives by using the doctor blade technique,”Optoelectron Rev (2000), pp. 280-283
[44] M. pawar ,S. T. Sendogdular, P. Gouma, “A Brief Overview of TiO2 Photocatalyst for Organic Dye Remediation: Case Study of Reaction Mechanisms Involved in Ce- TiO2 Photocatalysts System,” Journal of Nanomaterials, 2018
[45] M. Dahbi, M. Fukunishi, T. Horiba, N. Yabuuchi, S. Yasuno, S. Komaba, “High performance red phosphorus electrode in ionic liquid-based electrolyte for Na-ion batteries,”J. Power Sources 363 (2017) 404–412.
[46] Z.Y. Ong, Y. Cai, G. Zhang, Y.W. Zhang, “Strong Thermal Transport Anisotropy and Strain Modulation in Single-Layer Phosphorene,”J. Phys. Chem. C 118 (2014) 25272–25277.
[47] L.F. Gao, J.Y. Xu, Z.Y. Zhu, C.X. Hu, L. Zhang, Q. Wang, H.L. Zhang, “Small molecule-assisted fabrication of black phosphorus quantum dots with a broadband nonlinear optical response,” Nanoscale 8(2016) 15132–15136.
[48] B. Liao, H. Zhao, E. Najafi, X. Yan, H. Tian, J. Tice, A.J. Minnich, H. Wang,A.H. Zewail, “Spatial-Temporal Imaging of Anisotropic Photocarrier Dynamics in Black Phosphorus,” Nano Lett. 17 (2017) 3675–3680.
[49] D. Yang, G. Yang, P. Yang, R. Lv, S. Gai, C.X. Li, F. He, J. Lin, “Assembly of Au Plasmonic Photothermal Agent and Iron Oxide Nanoparticles on Ultrathin Black Phosphorus for Targeted Photothermal and Photodynamic Cancer Therapy,” Adv. Funct. Mater. 27(2017) 1700371.
[50] Y.H. Xu, J. Dai, X.C. Zeng, “Electron-Transport Properties of Few-Layer Black Phosphorus,” J. Phys. Chem. Lett. 6 (2015) 1996–2002.
[51] Z. Wang, H. Jia, X. Zheng, R. Yang, Z. Wang, G.J. Ye, X.H. Chen, “Black phosphorus nanoelectromechanical resonators vibrating at very high frequencies,” Nanoscale 7 (2015)877–884.
[52] J.F. Shen, Y.M. He, J.J. Wu, C.T. Gao, K. Keyshar, M.X. Ye, R. Vajtai, J. Lou, P.M. Ajayan, “Liquid Phase Exfoliation of Two-Dimensional Materials by Directly Probing and Matching Surface Tension Components,” Nano Lett. 15 (2015) 5449–5454.
[53] D. Wang, G.C. Guo, X.L. Wei, L.M. Liu, S.J. Zhao, “Phosphorene ribbons as anode materials with superhigh rate and large capacity for Li-ion batteries," J. Power Sources 302 (2016)215–222.
[54] X.J. Zhu, T.M. Zhang, Z.J. Sun, H.L. Chen, J. Guan, X. Chen, H.X. Ji, P.W. Du, S.F. Yang, “Black Phosphorus Revisited: A Missing Metal-Free Elemental Photocatalyst for Visible Light Hydrogen Evolution,” Adv. Mater. 29 (2017) 1605776.
[55] S.H. Lin, S.H. Liu, Z.B. Yang, Y.Y. Li, T.W. Ng, Z.Q. Xu, Q.L. Bao, J.H. Hao, C.S. Lee, C. Surya, F. Yan, S.P. Lau, “Solution-Processable Ultrathin Black Phosphorus as an Effective Electron Transport Layer in Organic Photovoltaics," Adv. Funct. Mater. 26 (2016) 864–871.
[56] Chen W, Li K, Wang Y, Feng X, Liao Z, Su Q, Lin X, He Z, “Black phosphorus quantum dots for hole extraction of typical planar hybrid perovskite solar cells.” J Phys Chem Lett,8(2017),pp. 591–598
[57] Yang Y, Gao J, Zhang Z, Xiao S, Xie H-H, Sun Z-B, Wang J-H, Zhou C-H, Wang Y-W, Guo X-Y, Chu PK, Yu X-F, “Black phosphorus based photocathodes in wideband bifacial dye-sensitized solar cells.” Adv Mater 28(2016),pp. 8937–8944
[58] Zhu M, Sun Z, Fujitsuka M, Majima T, “Z-scheme photocatalytic water splitting on a 2D heterostructure of black phosphorus/bismuth vanadate using visible light.” Angew Chem Int Edit 57(2018),pp. 2160–2164
[59] V. Sorkin, Y. Cai, Z. Ong, G. Zhang, Y.W. Zhang,“Recent advances in the study of phosphorene and its nanostructures,”Crit. Rev. Solid State Mater. Sci., 42 (2017), pp.1-82, 10.1080/10408436.2016.1182469
[60] W. Lei, G. Liu, J. Zhang, M. Liu,“Black phosphorus nanostructures: recent advances in hybridization, doping and functionalization,” Chem. Soc. Rev., 46(2017), pp. 3492-3509, 10.1039/C7CS00021A