Abbasi, M., Pokhrel, D., Coats, E. R., Guho, N. M., & McDonald, A. G. (2022). Effect of 3-Hydroxyvalerate Content on Thermal, Mechanical, and Rheological Properties of Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) Biopolymers Produced from Fermented Dairy Manure. Polymers, 14(19), 4140.
Anjum, A., Zuber, M., Zia, K. M., Noreen, A., Anjum, M. N., & Tabasum, S. (2016). Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: a review of recent advancements. International journal of biological macromolecules, 89, 161-174.
Bahreini, E., Aghaiypour, K., Abbasalipourkabir, R., Goodarzi, M. T., Saidijam, M., & Safavieh, S. S. (2014). An optimized protocol for overproduction of recombinant protein expression in Escherichia coli. Preparative Biochemistry and Biotechnology, 44(5), 510-528.
Berger, E., Ramsay, B. A., Ramsay, J. A., Chavarie, C., & Braunegg, G. (1989). PHB recovery by hypochlorite digestion of non-PHB biomass. Biotechnology techniques, 3(4), 227-232.
Bozell, J. J., Moens, L., Elliott, D. C., Wang, Y., Neuenscwander, G. G., Fitzpatrick, S. W., ... & Jarnefeld, J. L. (2000). Production of levulinic acid and use as a platform chemical for derived products. Resources, conservation and recycling, 28(3-4), 227-239.
Canete-Rodriguez, A. M., Santos-Duenas, I. M., Jimenez-Hornero, J. E., Ehrenreich, A., Liebl, W., & Garcia-Garcia, I. (2016). Gluconic acid: Properties, production methods and applications—An excellent opportunity for agro-industrial by-products and waste bio-valorization. Process biochemistry, 51(12), 1891-1903.
Choi, S. Y., Rhie, M. N., Kim, H. T., Joo, J. C., Cho, I. J., Son, J., ... & Park, S. J. (2020). Metabolic engineering for the synthesis of polyesters: A 100-year journey from polyhydroxyalkanoates to non-natural microbial polyesters. Metabolic engineering, 58, 47-81.
D'Amico, D. A., Manfredi, L. B., & Cyras, V. P. (2012). Relationship between thermal properties, morphology, and crystallinity of nanocomposites based on polyhydroxybutyrate. Journal of Applied Polymer Science, 123(1), 200-208.
Gonzalez, K., Navia, R., Liu, S., & Cea, M. (2021). Biological approaches in polyhydroxyalkanoates recovery. Current Microbiology, 78(1), 1-10.
Gorenflo, V., Steinbüchel, A., Marose, S., Rieseberg, M., & Scheper, T. (1999). Quantification of bacterial polyhydroxyalkanoic acids by Nile red staining. Applied microbiology and biotechnology, 51(6), 765-772.
Hahn, S. K., Chang, Y. K., Kim, B. S., & Chang, H. N. (1994). Optimization of microbial poly (3‐hydroxybutyrate) recover using dispersions of sodium hypochlorite solution and chloroform. Biotechnology and Bioengineering, 44(2), 256-261.
Ibrahim, H. R., Matsuzaki, T., & Aoki, T. (2001). Genetic evidence that antibacterial activity of lysozyme is independent of its catalytic function. FEBS letters, 506(1), 27-32.
Inouye, M., Arnheim, N., & Sternglanz, R. (1973). Bacteriophage T7 lysozyme is an N-acetylmuramyl-L-alanine amidase. Journal of biological chemistry, 248(20), 7247-7252.
Jacquel, N., Lo, C. W., Wei, Y. H., Wu, H. S., & Wang, S. S. (2008). Isolation and purification of bacterial poly (3-hydroxyalkanoates). Biochemical engineering journal, 39(1), 15-27.
Kaniuk, Ł., & Stachewicz, U. (2021). Development and advantages of biodegradable PHA polymers based on electrospun PHBV fibers for tissue engineering and other biomedical applications. ACS Biomaterials Science & Engineering, 7(12), 5339-5362.
Kelleci, K., Altundoğan, H. S., & Tanyıldızı, M. Ş. (2022). Valorization of Beet-Processing Sugar Factory by-Products for in-situ Gluconic Acid Production by using Aspergillus Niger Fermentation. Sugar Tech, 1-12.
Koller, M. (2018). Biodegradable and biocompatible polyhydroxy-alkanoates (PHA): auspicious microbial macromolecules for pharmaceutical and therapeutic applications. Molecules, 23(2), 362.
Koller, M., & Mukherjee, A. (2022). A new wave of industrialization of PHA biopolyesters. Bioengineering, 9(2), 74.
Kunasundari, B., & Sudesh, K. (2011). Isolation and recovery of microbial polyhydroxyalkanoates. Express Polymer Letters, 5(7).
Lafferty, R. M., & Heinzle, E. (1979). U.S. Patent No. 4,140,741. Washington, DC: U.S. Patent and Trademark Office.
Laycock, B., Halley, P., Pratt, S., Werker, A., & Lant, P. (2013). The chemomechanical properties of microbial polyhydroxyalkanoates. Progress in polymer science, 38(3-4), 536-583.
Lee, S. E., Li, Q. X., & Yu, J. (2009). Diverse protein regulations on PHA formation in Ralstonia eutropha on short chain organic acids. International journal of biological sciences, 5(3), 215.
Matejko, J., Marciniak, P., & Szacherska, K. (2019). Polyhydroxyalkanoates synthesized by Aeromonas species: trends and challenges. Polymers, 11(8), 1328.
Morone, A., Apte, M., & Pandey, R. A. (2015). Levulinic acid production from renewable waste resources: Bottlenecks, potential remedies, advancements and applications. Renewable and Sustainable Energy Reviews, 51, 548-565.
Muneer, F., Rasul, I., Azeem, F., Siddique, M. H., Zubair, M., & Nadeem, H. (2020). Microbial polyhydroxyalkanoates (PHAs): efficient replacement of synthetic polymers. Journal of Polymers and the Environment, 28(9), 2301-2323.
Ouyang, S. P., Liu, Q., Fang, L., & Chen, G. Q. (2007). Construction of pha‐operon‐defined knockout mutants of Pseudomonas putida KT2442 and their applications in poly (hydroxyalkanoate) production. Macromolecular bioscience, 7(2), 227-233.
Pal, P., Kumar, R., & Banerjee, S. (2016). Manufacture of gluconic acid: A review towards process intensification for green production. Chemical Engineering and Processing: Process Intensification, 104, 160-171.
Patel, A. D., Serrano-Ruiz, J. C., Dumesic, J. A., & Anex, R. P. (2010). Techno-economic analysis of 5-nonanone production from levulinic acid. Chemical Engineering Journal, 160(1), 311-321.
Peregrina, A., Martins-Lourenço, J., Freitas, F., Reis, M. A., & Arraiano, C. M. (2021). Post-Transcriptional Control in the Regulation of Polyhydroxyalkanoates Synthesis. Life, 11(8), 853.
Philip, S., Keshavarz, T., & Roy, I. (2007). Polyhydroxyalkanoates: biodegradable polymers with a range of applications. Journal of chemical technology & biotechnology: International research in process, Environmental & clean technology, 82(3), 233-247.
Priya, A., Dutta, K., & Daverey, A. (2022). A comprehensive biotechnological and molecular insight into plastic degradation by microbial community. Journal of Chemical Technology & Biotechnology, 97(2), 381-390.
Priya, A., Hathi, Z., Haque, M. A., Kumar, S., Kumar, A., Singh, E., & Lin, C. S. (2022). Effect of levulinic acid on production of polyhydroxyalkanoates from food waste by Haloferax mediterranei. Environmental Research, 214, 114001.
Ramsay, J. A., Berger, E., Ramsay, B. A., & Chavarie, C. (1990). Recovery of poly-3-hydroxyalkanoic acid granules by a surfactant-hypochlorite treatment. Biotechnology Techniques, 4(4), 221-226.
Raval, N., Kalyane, D., Maheshwari, R., & Tekade, R. K. (2019). Copolymers and Block Copolymers in Drug Delivery and Therapy. In Basic Fundamentals of Drug Delivery (pp. 173-201). Academic Press.
Raza, Z. A., Abid, S., & Banat, I. M. (2018). Polyhydroxyalkanoates: Characteristics, production, recent developments and applications. International Biodeterioration & Biodegradation, 126, 45-56.
Reddy, V. U. N., Ramanaiah, S. V., Reddy, M. V., & Chang, Y. C. (2022). Review of the developments of bacterial medium-chain-length polyhydroxyalkanoates (mcl-PHAs). Bioengineering, 9(5), 225.
Ren, Q., Beilen, J. B. V., Sierro, N., Zinn, M., Kessler, B., & Witholt, B. (2005). Expression of PHA polymerase genes of Pseudomonas putida in Escherichia coli and its effect on PHA formation. Antonie Van Leeuwenhoek, 87(2), 91-100.
Resch, S., Gruber, K., Wanner, G., Slater, S., Dennis, D., & Lubitz, W. (1998). Aqueous release and purification of poly (β-hydroxybutyrate) from Escherichia coli. Journal of biotechnology, 65(2-3), 173-182.
Sheu, D. S., Chen, Y. L. L., Jhuang, W. J., Chen, H. Y., & Jane, W. N. (2018). Cultivation temperature modulated the monomer composition and polymer properties of polyhydroxyalkanoate synthesized by Cupriavidus sp. L7L from levulinate as sole carbon source. International journal of biological macromolecules, 118, 1558-1564.
Shishatskaya, E. I., Nikolaeva, E. D., Vinogradova, O. N., & Volova, T. G. (2016). Experimental wound dressings of degradable PHA for skin defect repair. Journal of Materials Science: Materials in Medicine, 27(11), 1-16.
Shrivastav, A., Kim, H. Y., & Kim, Y. R. (2013). Advances in the applications of polyhydroxyalkanoate nanoparticles for novel drug delivery system. BioMed research international, 2013.
Solaiman, D. K., & Ashby, R. D. (2005). Rapid genetic characterization of poly (hydroxyalkanoate) synthase and its applications. Biomacromolecules, 6(2), 532-537.
Steinbüchel, A., & Füchtenbusch, B. (1998). Bacterial and other biological systems for polyester production. Trends in biotechnology, 16(10), 419-427.
Steiner, H. (2004). Peptidoglycan recognition proteins: on and off switches for innate immunity. Immunological reviews, 198(1), 83-96.
Studier, F. W. (1991). Use of bacteriophage T7 lysozyme to improve an inducible T7 expression system. Journal of molecular biology, 219(1), 37-44.
Tamer, I. M., Moo-Young, M., & Chisti, Y. (1998). Disruption of Alcaligenes latus for recovery of poly (β-hydroxybutyric acid): comparison of high-pressure homogenization, bead milling, and chemically induced lysis. Industrial & engineering chemistry research, 37(5), 1807-1814.1
Tan, H. T., Chek, M. F., Lakshmanan, M., Foong, C. P., Hakoshima, T., & Sudesh, K. (2020). Evaluation of BP-M-CPF4 polyhydroxyalkanoate (PHA) synthase on the production of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) from plant oil using Cupriavidus necator transformants. International journal of biological macromolecules, 159, 250-257.
Tanadchangsaeng, N., & Yu, J. (2013). Miscibility of natural polyhydroxyalkanoate blend with controllable material properties. Journal of applied polymer science, 129(4), 2004-2016.
Ummartyotin, S., & Manuspiya, H. (2015). A critical review on cellulose: From fundamental to an approach on sensor technology. Renewable and Sustainable Energy Reviews, 41, 402-412.
Valappil, S. P., Boccaccini, A. R., Bucke, C., & Roy, I. (2007). Polyhydroxyalkanoates in Gram-positive bacteria: insights from the genera Bacillus and Streptomyces. Antonie van leeuwenhoek, 91(1), 1-17.
Wang, K., & Zhang, R. (2021). Production of polyhydroxyalkanoates (PHA) by Haloferax mediterranei from food waste derived nutrients for biodegradable plastic applications.
Wang, Y., Chen, R., Cai, J., Liu, Z., Zheng, Y., Wang, H., ... & He, N. (2013). Biosynthesis and thermal properties of PHBV produced from levulinic acid by Ralstonia eutropha. PloS one, 8(4), e60318.
Werpy, T., & Petersen, G. (2004). Top value added chemicals from biomass: volume I--results of screening for potential candidates from sugars and synthesis gas (No. DOE/GO-102004-1992). National Renewable Energy Lab., Golden, CO (US).
Wu, T., Jiang, Q., Wu, D., Hu, Y., Chen, S., Ding, T., ... & Chen, J. (2019). What is new in lysozyme research and its application in food industry? A review. Food chemistry, 274, 698-709.
Yasotha, K., Aroua, M. K., Ramachandran, K. B., & Tan, I. K. P. (2006). Recovery of medium-chain-length polyhydroxyalkanoates (PHAs) through enzymatic digestion treatments and ultrafiltration. Biochemical engineering journal, 30(3), 260-268.
Zhila, N. O., Sapozhnikova, K. Y., Kiselev, E. G., Nemtsev, I. V., Lukyanenko, A. V., Shishatskaya, E. I., & Volova, T. G. (2022). Biosynthesis and Properties of a P (3HB-co-3HV-co-4HV) Produced by Cupriavidus necator B-10646. Polymers, 14(19), 4226.
林育嘉 (2021)。大腸桿菌中溶菌酶基因的表現對PHA產率與純化效率的影響。國立高雄科技大學海洋生物技術系暨研究所碩士論文,台灣高雄。林蕙君 (2022)。剔除PHA解聚酶基因對PHA產量、單體組成與物性的影響。國立高雄科技大學海洋生物技術系暨研究所碩士論文,台灣高雄。莊雯鈞 (2016)。Cupriavidus sp. L7L以果糖酸為唯一碳源生合成poly (3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxyvalerate) 三元共聚物的研究。國立高雄科技大學海洋生物技術系暨研究所碩士論文,台灣高雄。
陳俊豪 (2021)。聚羥基烷酸酯嵌段共聚物的生合成與物性之研究。國立高雄科技大學海洋生物技術系暨研究所碩士論文,台灣高雄。陳紀融 (2018)。野生株Cupriavidus sp. L7L以分子育種提升其PHA產量之研究。國立高雄科技大學海洋生物技術系暨研究所碩士論文,台灣高雄。