|
Agrawal, M., Goyal, A., Akhtar, A., & Abbas, H. (2024). Green Bond: A Government Initiative Towards Sustainable Finance. In Issues of Sustainability in AI and New-Age Thematic Investing (pp. 124-137). IGI Global. Ahmad, H. O., & Umar, S. U. (2023). Sentiment analysis of financial textual data using machine learning and deep learning models. Informatica, 47(5). Al Muhairi, M., & Nobanee, H. (2019). Sustainable financial management. Available at SSRN 3472417. Alaparthi, S., & Mishra, M. (2021). BERT: A sentiment analysis odyssey. Journal of Marketing Analytics, 9(2), 118-126. Andhale, S., Mane, P., Vaingankar, M., Karia, D., & Talele, K. (2021). Twitter Sentiment Analysis For COVID-19. 2021 International Conference on Communication information and Computing Technology (ICCICT), Anthropic. (2024). Introduction to Claude-3-Opus. https://www.anthropic.com/claude Arroni, S., Galán, Y., Guzmán-Guzmán, X., Núñez-Valdez, E. R., & Gómez, A. (2023). Sentiment Analysis and Classification of Hotel Opinions in Twitter With the Transformer Architecture. Aune, F. R., & Golombek, R. (2021). Are carbon prices redundant in the 2030 EU climate and energy policy package? The Energy Journal, 42(3), 225-264. Aygün, I., Kaya, B., & Kaya, M. (2021). Aspect based twitter sentiment analysis on vaccination and vaccine types in covid-19 pandemic with deep learning. IEEE Journal of Biomedical and Health Informatics, 26(5), 2360-2369. Behdenna, S., Barigou, F., & Belalem, G. (2018). Document level sentiment analysis: a survey. EAI Endorsed Transactions on Context-aware Systems and Applications, 4(13), e2-e2. Bernabé-Moreno, J., Tejeda-Lorente, A., Herce-Zelaya, J., Porcel, C., & Herrera-Viedma, E. (2020). A context-aware embeddings supported method to extract a fuzzy sentiment polarity dictionary. Knowledge-Based Systems, 190, 105236. Birjali, M., Kasri, M., & Beni-Hssane, A. (2021). A comprehensive survey on sentiment analysis: Approaches, challenges and trends. Knowledge-Based Systems, 226, 107134. Bonta, V., & Janardhan, N. K. a. N. (2019). A comprehensive study on lexicon based approaches for sentiment analysis. Asian Journal of Computer Science and Technology, 8(S2), 1-6. Bozanta, A., Angco, S., Cevik, M., & Basar, A. (2021). Sentiment Analysis of StockTwits Using Transformer Models. 2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA), Burnham, M. (2024). What is Sentiment Meant to Mean to Language Models? arXiv preprint arXiv:2405.02454. Cai, R., Qin, B., Chen, Y., Zhang, L., Yang, R., Chen, S., & Wang, W. (2020). Sentiment analysis about investors and consumers in energy market based on BERT-BiLSTM. IEEE access, 8, 171408-171415. Cao, Z., & Feinstein, Z. (2024). Large Language Model in Financial Regulatory Interpretation. arXiv preprint arXiv:2405.06808. Dahir, U. M., & Alkindy, F. K. (2023). Utilizing machine learning for sentiment analysis of IMDB movie review data. International Journal of Engineering Trends and Technology, 71(5), 18-26. Deepa, M. D. (2021). Bidirectional encoder representations from transformers (BERT) language model for sentiment analysis task. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 12(7), 1708-1721. Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805. Dong, J., He, F., Guo, Y., & Zhang, H. (2020). A commodity review sentiment analysis based on BERT-CNN model. 2020 5th International conference on computer and communication systems (ICCCS), Eachempati, P., & Srivastava, P. R. (2022). Accounting for investor sentiment in news and disclosures. Qualitative Research in Financial Markets, 14(1), 53-75. Edalati, M., Imran, A. S., Kastrati, Z., & Daudpota, S. M. (2022). The potential of machine learning algorithms for sentiment classification of students’ feedback on MOOC. Intelligent Systems and Applications: Proceedings of the 2021 Intelligent Systems Conference (IntelliSys) Volume 3, El Alaoui, M., Bouri, E., & Azoury, N. (2020). The determinants of the US consumer sentiment: Linear and nonlinear models. International Journal of Financial Studies, 8(3), 38. Elfaik, H., & Nfaoui, E. H. (2020). Deep bidirectional LSTM network learning-based sentiment analysis for Arabic text. Journal of Intelligent Systems, 30(1), 395-412. Elfeky, A. I. M., Masadeh, T. S. Y., & Elbyaly, M. Y. H. (2020). Advance organizers in flipped classroom via e-learning management system and the promotion of integrated science process skills. Thinking Skills and Creativity, 35, 100622. Elshakankery, K., & Ahmed, M. F. (2019). HILATSA: A hybrid Incremental learning approach for Arabic tweets sentiment analysis. Egyptian Informatics Journal, 20(3), 163-171. Fang, Z., Zhang, Q., Tang, X., Wang, A., & Baron, C. (2020). An implicit opinion analysis model based on feature-based implicit opinion patterns. Artificial Intelligence Review, 53, 4547-4574. Fazal, U., Khan, M., Maqbool, M. S., Bibi, H., & Nazeer, R. (2023). Sentiment Analysis of Omicron Tweets by using Machine Learning Models. VFAST Transactions on Software Engineering, 11(1), 67-75. Feng, S., Wang, B., Yang, Z., & Ouyang, J. (2022). Aspect-based sentiment analysis with attention-assisted graph and variational sentence representation. Knowledge-Based Systems, 258, 109975. Fleschutz, M., Bohlayer, M., Braun, M., Henze, G., & Murphy, M. D. (2021). The effect of price-based demand response on carbon emissions in European electricity markets: The importance of adequate carbon prices. Applied Energy, 295, 117040. Government, U. (2021). UK Emissions Trading Scheme markets. Retrieved 2024/06/10 from https://www.gov.uk/government/publications/uk-emissions-trading-scheme-markets/uk-emissions-trading-scheme-markets Gräßer, F., Kallumadi, S., Malberg, H., & Zaunseder, S. (2018). Aspect-based sentiment analysis of drug reviews applying cross-domain and cross-data learning. Proceedings of the 2018 international conference on digital health, Howie, P., Gupta, S., Park, H., & Akmetov, D. (2020). Evaluating policy success of emissions trading schemes in emerging economies: comparing the experiences of Korea and Kazakhstan. Climate Policy, 20(5), 577-592. HuggingFace. (2023). Llama 3: Meta's New Open LLM. Retrieved 2024/06/10 from https://huggingface.co/blog/llama3 Iyer, G., Clarke, L., Edmonds, J., Fawcett, A., Fuhrman, J., McJeon, H., & Waldhoff, S. (2021). The role of carbon dioxide removal in net-zero emissions pledges. Energy and climate change, 2, 100043. Jung, H., Song, S., Ahn, Y.-H., Hwang, H., & Song, C.-K. (2021). Effects of emission trading schemes on corporate carbon productivity and implications for firm-level responses. Scientific Reports, 11(1), 11679. Kastrati, Z., Ahmedi, L., Kurti, A., Kadriu, F., Murtezaj, D., & Gashi, F. (2021). A deep learning sentiment analyser for social media comments in low-resource languages. Electronics, 10(10), 1133. Khan, M., & Srivastava, A. (2024). Sentiment analysis of Twitter data using machine learning techniques. International Journal of Engineering and Management Research, 14(1), 196-203. Kheiri, K., & Karimi, H. (2023). Sentimentgpt: Exploiting gpt for advanced sentiment analysis and its departure from current machine learning. arXiv preprint arXiv:2307.10234. Kumar, S., Sharma, D., Rao, S., Lim, W. M., & Mangla, S. K. (2022). Past, present, and future of sustainable finance: insights from big data analytics through machine learning of scholarly research. Annals of Operations Research, 1-44. Leining, C., Kerr, S., & Bruce-Brand, B. (2020). The New Zealand Emissions Trading Scheme: critical review and future outlook for three design innovations. Climate Policy, 20(2), 246-264. Lessmann, C., & Kramer, N. (2024). The effect of cap-and-trade on sectoral emissions: Evidence from California. Energy Policy, 188, 114066. Li, H., Ma, Y., Ma, Z., & Zhu, H. (2021). Weibo text sentiment analysis based on bert and deep learning. Applied Sciences, 11(22), 10774. Ligthart, A., Catal, C., & Tekinerdogan, B. (2021). Systematic reviews in sentiment analysis: a tertiary study. Artificial Intelligence Review, 1-57. Lin, B., & Huang, C. (2022). Analysis of emission reduction effects of carbon trading: Market mechanism or government intervention? Sustainable Production and Consumption, 33, 28-37. Lin, X. V., Mihaylov, T., Artetxe, M., Wang, T., Chen, S., Simig, D., Ott, M., Goyal, N., Bhosale, S., & Du, J. (2021). Few-shot learning with multilingual language models. arXiv preprint arXiv:2112.10668. Liu, B. (2012). Sentiment analysis and opinion mining. Synthesis lectures on human language technologies, 5(1), 1-167. Liu, M., & Ying, Q. (2023). The role of online news sentiment in carbon price prediction of China’s carbon markets. Environmental Science and Pollution Research, 1-9. Liu, Y., Lu, J., Yang, J., & Mao, F. (2020). Sentiment analysis for e-commerce product reviews by deep learning model of Bert-BiGRU-Softmax. Mathematical Biosciences and Engineering, 17(6), 7819-7837. Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., & Stoyanov, V. (2019). Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692. Loukili, M., Messaoudi, F., & El Ghazi, M. (2023). Sentiment Analysis of Product Reviews for E-Commerce Recommendation based on Machine Learning. International Journal of Advances in Soft Computing & Its Applications, 15(1). Luo, W., & Gong, D. (2024). Pre-trained Large Language Models for Financial Sentiment Analysis. arXiv preprint arXiv:2401.05215. Majumder, N., Bhardwaj, R., Poria, S., Gelbukh, A., & Hussain, A. (2022). Improving aspect-level sentiment analysis with aspect extraction. Neural Computing and Applications, 1-11. Mallick, C., Mishra, S., Giri, P. K., & Paikaray, B. K. (2023). Machine learning approaches to sentiment analysis in online social networks. International Journal of Work Innovation, 3(4), 317-337. Mathew, L., & Bindu, V. (2020). A review of natural language processing techniques for sentiment analysis using pre-trained models. 2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC), Mazmanian, D. A., Jurewitz, J. L., & Nelson, H. T. (2020). State leadership in US climate change and energy policy: The California experience. The Journal of Environment & Development, 29(1), 51-74. Mokni, K., Bouteska, A., & Nakhli, M. S. (2022). Investor sentiment and Bitcoin relationship: A quantile-based analysis. The North American Journal of Economics and Finance, 60, 101657. Nezhurina, M., Cipolina-Kun, L., Cherti, M., & Jitsev, J. (2024). Alice in Wonderland: Simple Tasks Showing Complete Reasoning Breakdown in State-Of-the-Art Large Language Models. arXiv preprint arXiv:2406.02061. OpenAI. (2024). OpenAI Official Website. Retrieved 2024/6/10 from https://openai.com/ Pahle, M., Quemin, S., Osorio, S., Günther, C., & Pietzcker, R. (2023). The emerging endgame: the EU ETS on the road towards climate neutrality. Available at SSRN 4707860. Pipalia, K., Bhadja, R., & Shukla, M. (2020). Comparative analysis of different transformer based architectures used in sentiment analysis. 2020 9th International Conference System Modeling and Advancement in Research Trends (SMART), Prasad, S., Mohapatra, S., Rahman, M. R., & Puniyani, A. (2022). Investor sentiment index: a systematic review. International Journal of Financial Studies, 11(1), 6. Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training. Rodrigues, A. P., Fernandes, R., Shetty, A., Lakshmanna, K., & Shafi, R. M. (2022). Real-time twitter spam detection and sentiment analysis using machine learning and deep learning techniques. Computational Intelligence and Neuroscience, 2022. Rogelj, J., Shindell, D., Jiang, K., Fifita, S., Forster, P., Ginzburg, V., Handa, C., Kheshgi, H., Kobayashi, S., & Kriegler, E. (2018). Mitigation pathways compatible with 1.5 C in the context of sustainable development. In Global warming of 1.5 C (pp. 93-174). Intergovernmental Panel on Climate Change. Rontard, B., & Hernandez, H. R. (2022). Emission trading system and forest: learning from the experience of New Zealand. Towards an Emissions Trading System in Mexico: Rationale, Design and Connections with the Global Climate Agenda: Outlook on the first ETS in Latin-America and Exploration of the Way Forward, 169-189. Sadia, A., Khan, F., & Bashir, F. (2018). An overview of lexicon-based approach for sentiment analysis. 2018 3rd International Electrical Engineering Conference (IEEC 2018), Shapiro, A. H., Sudhof, M., & Wilson, D. J. (2022). Measuring news sentiment. Journal of econometrics, 228(2), 221-243. Shu, D. Y., Deutz, S., Winter, B. A., Baumgärtner, N., Leenders, L., & Bardow, A. (2023). The role of carbon capture and storage to achieve net-zero energy systems: Trade-offs between economics and the environment. Renewable and Sustainable Energy Reviews, 178, 113246. Sirisha, U., & Bolem, S. C. (2022). Aspect based Sentiment & Emotion Analysis with ROBERTa, LSTM. International Journal of Advanced Computer Science and Applications, 13(11). Sousa, M. G., Sakiyama, K., de Souza Rodrigues, L., Moraes, P. H., Fernandes, E. R., & Matsubara, E. T. (2019). BERT for stock market sentiment analysis. 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI), Steckel, J. C., Jakob, M., Flachsland, C., Kornek, U., Lessmann, K., & Edenhofer, O. (2017). From climate finance toward sustainable development finance. Wiley Interdisciplinary Reviews: Climate Change, 8(1), e437. Su, B., & Peng, J. (2023). Sentiment analysis of comment texts on online courses based on hierarchical attention mechanism. Applied Sciences, 13(7), 4204. Tian, J., Slamu, W., Xu, M., Xu, C., & Wang, X. (2022). Research on Aspect-Level Sentiment Analysis Based on Text Comments. Symmetry, 14(5), 1072. Trivedi, S., & Patel, N. (2022). Mining Public Opinion about Hybrid Working With RoBERTa. Empirical Quests for Management Essences, 2(1), 31-44. Ur Rehman, M., Raheem, I. D., Al Rababa’a, A. R., Ahmad, N., & Vo, X. V. (2022). Reassessing the predictability of the investor sentiments on US stocks: The role of uncertainty and risks. Journal of Behavioral Finance, 1-16. Värtinen, S., Hämäläinen, P., & Guckelsberger, C. (2022). Generating role-playing game quests with GPT language models. IEEE transactions on games. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30. Wagh, R., & Punde, P. (2018). Survey on sentiment analysis using twitter dataset. 2018 Second International Conference on Electronics, Communication and Aerospace Technology (ICECA), Wang, H. (2019). VIX and volatility forecasting: A new insight. Physica A: Statistical Mechanics and its Applications, 533, 121951. Wang, L., Yang, N., Huang, X., Yang, L., Majumder, R., & Wei, F. (2023). Improving text embeddings with large language models. arXiv preprint arXiv:2401.00368. Wang, T., Zhang, X., Ma, Y., & Wang, Y. (2023). Risk contagion and decision-making evolution of carbon market enterprises: Comparisons with China, the United States, and the European Union. Environmental Impact Assessment Review, 99, 107036. Wankhade, M., Rao, A. C. S., & Kulkarni, C. (2022). A survey on sentiment analysis methods, applications, and challenges. Artificial Intelligence Review, 55(7), 5731-5780. Wei, Y., Gong, P., Zhang, J., & Wang, L. (2021). Exploring public opinions on climate change policy in" Big Data Era"—A case study of the European Union Emission Trading System (EU-ETS) based on Twitter. Energy Policy, 158, 112559. Wu, T., He, S., Liu, J., Sun, S., Liu, K., Han, Q.-L., & Tang, Y. (2023). A brief overview of ChatGPT: The history, status quo and potential future development. IEEE/CAA Journal of Automatica Sinica, 10(5), 1122-1136. Xiang, N., Wang, L., Zhong, S., Zheng, C., Wang, B., & Qu, Q. (2021). How does the world view China’s carbon policy? A sentiment analysis on Twitter data. Energies, 14(22), 7782. Xiao, J., & Luo, X. (2022). Aspect-level sentiment analysis based on BERT fusion multi-attention. 2022 14th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC), Xu, Q. A., Chang, V., & Jayne, C. (2022). A systematic review of social media-based sentiment analysis: Emerging trends and challenges. Decision Analytics Journal, 100073. Yang, L., Li, Y., Wang, J., & Sherratt, R. S. (2020). Sentiment analysis for E-commerce product reviews in Chinese based on sentiment lexicon and deep learning. IEEE access, 8, 23522-23530. Zhang, Z., Hu, G., Mu, X., & Kong, L. (2022). From low carbon to carbon neutrality: A bibliometric analysis of the status, evolution and development trend. Journal of Environmental Management, 322, 116087. Zhao, Y., Wang, C., Sun, Y., & Liu, X. (2018). Factors influencing companies' willingness to pay for carbon emissions: Emission trading schemes in China. Energy Economics, 75, 357-367. Zheng, Y., Zhou, M., & Wen, F. (2021). Asymmetric effects of oil shocks on carbon allowance price: evidence from China. Energy Economics, 97, 105183. Zhou, X., Gao, Y., Wang, P., Zhu, B., & Wu, Z. (2022). Does herding behavior exist in China's carbon markets? Applied Energy, 308, 118313. Zhu, X., Gardiner, S., Roldán, T., & Rossouw, D. (2024). The Model Arena for Cross-lingual Sentiment Analysis: A Comparative Study in the Era of Large Language Models. arXiv preprint arXiv:2406.19358.
|