|
台灣區遠洋魷漁船魚類輸出業同業公會. (2022). 魷漁業資訊. 中華民國國家標準 CNS 5035 N6116 中華民國國家標準 CNS 5036 N6117 中華民國國家標準 CNS 5034 N6115 宋賢一(2002),生物化學實驗原理和方法 謝青秀.(2009).海鱺魚肝油脂質特性及 EPA 和 DHA 濃縮方法之探討. 韓仁嬌, 劉春紅, & 馮志彪. (2011). 不同酶切方式對乳清蛋白疏水性和乳化性的影響. 中國乳品工業, 39(10), 15-18. Marine Bureau, Kaohsiung City Government SEP 2021,FISHERIES YEARBOOK KAOHSIUNG CITY2020 Abd Elwakil, M. M., Mabrouk, M. T., Helmy, M. W., Abdelfattah, E.-Z. A., Khiste, S. K., Elkhodairy, K. A., & Elzoghby, A. O. (2018). Inhalable lactoferrin–chondroitin nanocomposites for combined delivery of doxorubicin and ellagic acid to lung carcinoma. Nanomedicine, 13(16), 2015-2035. Abdallah, M. M., Fernández, N., Matias, A. A., & Bronze, M. d. R. (2020). Hyaluronic acid and Chondroitin sulfate from marine and terrestrial sources: Extraction and purification methods. Carbohydrate Polymers, 243, 116441. https://doi.org/https://doi.org/10.1016/j.carbpol.2020.116441 Afrand, M., & Ranjbarzadeh, R. (2020). Chapter 2 - Hybrid nanofluids preparation method. In H. M. Ali (Ed.), Hybrid Nanofluids for Convection Heat Transfer (pp. 49-99). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-819280-1.00002-1 Agnihotri, S. A., Mallikarjuna, N. N., & Aminabhavi, T. M. (2004). Recent advances on chitosan-based micro- and nanoparticles in drug delivery. Journal of Controlled Release, 100(1), 5-28. https://doi.org/https://doi.org/10.1016/j.jconrel.2004.08.010 AlMohammed, H. I., Khudair Khalaf, A., E Albalawi, A., Alanazi, A. D., Baharvand, P., Moghaddam, A., & Mahmoudvand, H. (2021). Chitosan-Based Nanomaterials as Valuable Sources of Anti-Leishmanial Agents: A Systematic Review. Nanomaterials, 11(3), 689. Amrutkar, J. R., & Gattani, S. G. (2009). Chitosan–chondroitin sulfate based matrix tablets for colon specific delivery of indomethacin. AAPS pharmscitech, 10(2), 670-677. Amrutkar, J. R., & Gattani, S. G. (2009). Chitosan–Chondroitin Sulfate Based Matrix Tablets for Colon Specific Delivery of Indomethacin. AAPS pharmscitech, 10, 670-677. Augustsson, K., Michaud, D. S., Rimm, E. B., Leitzmann, M. F., Stampfer, M. J., Willett, W. C., & Giovannucci, E. (2003). A prospective study of intake of fish and marine fatty acids and prostate cancer. Cancer Epidemiology Biomarkers & Prevention, 12(1), 64-67. Bai, M., Han, W., Zhao, X., Wang, Q., Gao, Y., & Deng, S. (2018). Glycosaminoglycans from a sea snake (Lapemis curtus): extraction, structural characterization and antioxidant activity. Marine drugs, 16(5), 170. Bergamonti, L., Bergonzi, C., Graiff, C., Lottici, P. P., Bettini, R., & Elviri, L. (2019). 3D printed chitosan scaffolds: A new TiO2 support for the photocatalytic degradation of amoxicillin in water. Water Research, 163, 114841. https://doi.org/https://doi.org/10.1016/j.watres.2019.07.008 Berger, J., Reist, M., Mayer, J. M., Felt, O., Peppas, N. A., & Gurny, R. (2004). Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. European Journal of Pharmaceutics and Biopharmaceutics, 57(1), 19-34. https://doi.org/https://doi.org/10.1016/S0939-6411(03)00161-9 Bimbo, A. P. (1998). Guidelines for characterizing food-grade fish oils. Inform, 9(5). Branca, C., D'Angelo, G., Crupi, C., Khouzami, K., Rifici, S., Ruello, G., & Wanderlingh, U. (2016). Role of the OH and NH vibrational groups in polysaccharide-nanocomposite interactions: A FTIR-ATR study on chitosan and chitosan/clay films. Polymer, 99, 614-622. https://doi.org/https://doi.org/10.1016/j.polymer.2016.07.086 Brustad, M., Braaten, T., & Lund, E. (2004). Predictors for cod-liver oil supplement use—the Norwegian Women and Cancer Study. European journal of clinical nutrition, 58(1), 128-136. Cai, C., Solakyildirim, K., Yang, B., Beaudet, J. M., Weyers, A., Linhardt, R. J., & Zhang, F. (2012). Semi-synthesis of chondroitin sulfate-E from chondroitin sulfate-A. Carbohydrate Polymers, 87(1), 822-829. https://doi.org/https://doi.org/10.1016/j.carbpol.2011.08.075 Calder, P. C. (2006). n− 3 Polyunsaturated fatty acids, inflammation, and inflammatory diseases. The American journal of clinical nutrition, 83(6), 1505S-1519S. Carreira-Casais, A., Otero, P., Garcia-Perez, P., Garcia-Oliveira, P., Pereira, A. G., Carpena, M., Soria-Lopez, A., Simal-Gandara, J., & Prieto, M. A. (2021). Benefits and drawbacks of ultrasound-assisted extraction for the recovery of bioactive compounds from marine algae. International Journal of Environmental Research and Public Health, 18(17), 9153. Caruso, G. (2016). Fishery wastes and by-products: A resource to be valorised. Journal of FisheriesSciences. com, 10(1), 0-0. Caygill, C., & Hill, M. (1995). Fish, n-3 fatty acids and human colorectal and breast cancer mortality. European Journal of Cancer Prevention, 329-332. Chang, P.-K., Tsai, M.-F., Huang, C.-Y., Lee, C.-L., Lin, C., Shieh, C.-J., & Kuo, C.-H. (2021). Chitosan-Based Anti-Oxidation Delivery Nano-Platform: Applications in the Encapsulation of DHA-Enriched Fish Oil. Marine drugs, 19(8), 470. Chemat, F., Rombaut, N., Sicaire, A.-G., Meullemiestre, A., Fabiano-Tixier, A.-S., & Abert-Vian, M. (2017). Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrasonics Sonochemistry, 34, 540-560. https://doi.org/https://doi.org/10.1016/j.ultsonch.2016.06.035 Chen, S., Xue, C., Yin, L. a., Tang, Q., Yu, G., & Chai, W. (2011). Comparison of structures and anticoagulant activities of fucosylated chondroitin sulfates from different sea cucumbers. Carbohydrate Polymers, 83(2), 688-696. https://doi.org/https://doi.org/10.1016/j.carbpol.2010.08.040 Cheng, S., Li, F., & Mei, X. (2022). Structure, mechanical and physical properties of hordein/chitosan composite films. LWT, 163, 113596. https://doi.org/https://doi.org/10.1016/j.lwt.2022.113596 Dai, T., Tanaka, M., Huang, Y.-Y., & Hamblin, M. R. (2011). Chitosan preparations for wounds and burns: antimicrobial and wound-healing effects. Expert Review of Anti-infective Therapy, 9(7), 857-879. https://doi.org/10.1586/eri.11.59 Dawidczyk, C. M., Kim, C., Park, J. H., Russell, L. M., Lee, K. H., Pomper, M. G., & Searson, P. C. (2014). State-of-the-art in design rules for drug delivery platforms: Lessons learned from FDA-approved nanomedicines. Journal of Controlled Release, 187, 133-144. https://doi.org/https://doi.org/10.1016/j.jconrel.2014.05.036 De Deckere, E. (1999). Possible beneficial effect of fish and fish n-3 polyunsaturated fatty acids in breast and colorectal cancer. European Journal of Cancer Prevention, 213-221. Fan, W., Yan, W., Xu, Z., & Ni, H. (2012). Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique. Colloids and Surfaces B: Biointerfaces, 90, 21-27. https://doi.org/https://doi.org/10.1016/j.colsurfb.2011.09.042 Farndale, R. W., Buttle, D. J., & Barrett, A. J. (1986). Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochimica et Biophysica Acta (BBA)-General Subjects, 883(2), 173-177. Fàbregas, A., Miñarro, M., García-Montoya, E., Pérez-Lozano, P., Carrillo, C., Sarrate, R., Sánchez, N., Ticó, J. R., & Suñé-Negre, J. M. (2013). Impact of physical parameters on particle size and reaction yield when using the ionic gelation method to obtain cationic polymeric chitosan–tripolyphosphate nanoparticles. International Journal of Pharmaceutics, 446(1), 199-204. https://doi.org/https://doi.org/10.1016/j.ijpharm.2013.02.015 Foot, M., & Mulholland, M. (2005). Classification of chondroitin sulfate A, chondroitin sulfate C, glucosamine hydrochloride and glucosamine 6 sulfate using chemometric techniques. Journal of Pharmaceutical and Biomedical Analysis, 38(3), 397-407. https://doi.org/https://doi.org/10.1016/j.jpba.2005.01.026 Garnjanagoonchorn, W., Wongekalak, L., & Engkagul, A. (2007). Determination of chondroitin sulfate from different sources of cartilage. Chemical Engineering and Processing: Process Intensification, 46(5), 465-471. https://doi.org/https://doi.org/10.1016/j.cep.2006.05.019 Giji, S., & Arumugam, M. (2014). Chapter Four - Isolation and Characterization of Hyaluronic Acid from Marine Organisms. In S.-K. Kim (Ed.), Advances in Food and Nutrition Research (Vol. 72, pp. 61-77). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-800269-8.00004-X Gleissman, H., Johnsen, J. I., & Kogner, P. (2010). Omega-3 fatty acids in cancer, the protectors of good and the killers of evil? Experimental cell research, 316(8), 1365-1373. Guillén, M. a. D., & Cabo, N. (2002). Fourier transform infrared spectra data versus peroxide and anisidine values to determine oxidative stability of edible oils. Food Chemistry, 77(4), 503-510. Guillén, M. D., & Cabo, N. (2000). Some of the most significant changes in the Fourier transform infrared spectra of edible oils under oxidative conditions. Journal of the Science of Food and Agriculture, 80(14), 2028-2036. Gupta, B., Plummer, C., Bisson, I., Frey, P., & Hilborn, J. (2002). Plasma-induced graft polymerization of acrylic acid onto poly(ethylene terephthalate) films: characterization and human smooth muscle cell growth on grafted films. Biomaterials, 23(3), 863-871. https://doi.org/https://doi.org/10.1016/S0142-9612(01)00195-8 Hünkar, T., Aktan, F., Ceylan, A., & Karasu, C. (2002). Effects of cod liver oil on tissue antioxidant pathways in normal and streptozotocin‐diabetic rats. Cell Biochemistry and Function: Cellular biochemistry and its modulation by active agents or disease, 20(4), 297-302. Holub, B. J. (2009). Docosahexaenoic acid (DHA) and cardiovascular disease risk factors. Prostaglandins, Leukotrienes and Essential Fatty Acids, 81(2-3), 199-204. Hosseini, S. F., Zandi, M., Rezaei, M., & Farahmandghavi, F. (2013). Two-step method for encapsulation of oregano essential oil in chitosan nanoparticles: Preparation, characterization and in vitro release study. Carbohydrate Polymers, 95(1), 50-56. https://doi.org/https://doi.org/10.1016/j.carbpol.2013.02.031 Huber, G. M., Rupasinghe, H. V., & Shahidi, F. (2009). Inhibition of oxidation of omega-3 polyunsaturated fatty acids and fish oil by quercetin glycosides. Food Chemistry, 117(2), 290-295. Jayathilakan, K., Sultana, K., Radhakrishna, K., & Bawa, A. (2012). Utilization of byproducts and waste materials from meat, poultry and fish processing industries: a review. Journal of food science and technology, 49(3), 278-293. Kang, E., Neoh, K., & Ikada, Y. (2002). Grafting of polymer surfaces. In (pp. 2320-2340): Marcel Dekker: New York. Kassem, A., Ayoub, G. M., & Malaeb, L. (2019). Antibacterial activity of chitosan nano-composites and carbon nanotubes: A review. Science of The Total Environment, 668, 566-576. https://doi.org/https://doi.org/10.1016/j.scitotenv.2019.02.446 Kean, T., & Thanou, M. (2010). Biodegradation, biodistribution and toxicity of chitosan. Advanced Drug Delivery Reviews, 62(1), 3-11. https://doi.org/https://doi.org/10.1016/j.addr.2009.09.004 Kreuter, J. (1994). Nanoparticles. Colloidal drug delivery systems, 219-342. Kumar, H., & Kumar, V. (2018). Ultrasonication assisted formation and stability of water-in-oil nanoemulsions: Optimization and ternary diagram analysis. Ultrasonics Sonochemistry, 49, 79-88. https://doi.org/https://doi.org/10.1016/j.ultsonch.2018.07.022 Lamari, F. N., & Karamanos, N. K. (2006). Structure of chondroitin sulfate. Advances in Pharmacology, 53, 33-48. Langer, R. (2000). Biomaterials in drug delivery and tissue engineering: one laboratory's experience. Accounts of Chemical Research, 33(2), 94-101. Lasic, D. D., & Papahadjopoulos, D. (1998). Medical applications of liposomes. Elsevier. Li, J., Li, S., Wu, L., Yang, H., Wei, C., Ding, T., Linhardt, R. J., Zheng, X., Ye, X., & Chen, S. (2019). Ultrasound-assisted fast preparation of low molecular weight fucosylated chondroitin sulfate with antitumor activity. Carbohydrate Polymers, 209, 82-91. https://doi.org/https://doi.org/10.1016/j.carbpol.2018.12.061 Liang, J., & Liu, B. (2016). ROS‐responsive drug delivery systems. Bioengineering & translational medicine, 1(3), 239-251. Lignot, B., Lahogue, V., & Bourseau, P. (2003). Enzymatic extraction of chondroitin sulfate from skate cartilage and concentration-desalting by ultrafiltration. Journal of Biotechnology, 103(3), 281-284. https://doi.org/https://doi.org/10.1016/S0168-1656(03)00139-1 Liu, R., Luo, C., Pang, Z., Zhang, J., Ruan, S., Wu, M., Wang, L., Sun, T., Li, N., Han, L., Shi, J., Huang, Y., Guo, W., Peng, S., Zhou, W., & Gao, H. (2022). Advances of nanoparticles as drug delivery systems for disease diagnosis and treatment. Chinese Chemical Letters. https://doi.org/https://doi.org/10.1016/j.cclet.2022.05.032 Maccari, F., Ferrarini, F., & Volpi, N. (2010). Structural characterization of chondroitin sulfate from sturgeon bone. Carbohydrate Research, 345(11), 1575-1580. https://doi.org/https://doi.org/10.1016/j.carres.2010.05.016 Mirzadeh, M., Arianejad, M. R., & Khedmat, L. (2020). Antioxidant, antiradical, and antimicrobial activities of polysaccharides obtained by microwave-assisted extraction method: A review. Carbohydrate Polymers, 229, 115421. https://doi.org/https://doi.org/10.1016/j.carbpol.2019.115421 Mukhtar, M., Fényes, E., Bartos, C., Zeeshan, M., & Ambrus, R. (2021). Chitosan biopolymer, its derivatives and potential applications in nano-therapeutics: A comprehensive review. European Polymer Journal, 160, 110767. https://doi.org/https://doi.org/10.1016/j.eurpolymj.2021.110767 Murado, M. A., Fraguas, J., Montemayor, M. I., Vázquez, J. A., & González, P. (2010). Preparation of highly purified chondroitin sulphate from skate (Raja clavata) cartilage by-products. Process optimization including a new procedure of alkaline hydroalcoholic hydrolysis. Biochemical Engineering Journal, 49(1), 126-132. https://doi.org/https://doi.org/10.1016/j.bej.2009.12.006 Nakano, T., Ikawa, N., & Ozimek, L. (2000). An economical method to extract chondroitin sulphate-peptide from bovine nasal cartilage. Canadian agricultural engineering, 42(4), 205-208. Ohshima, T. (1998). Recovery and use of nutraceutical products from marine resources. Food technology (Chicago), 52(6), 50-54. Opanasopit, P., Aumklad, P., Kowapradit, J., Ngawhiranpat, T., Apirakaramwong, A., Rojanarata, T., & Puttipipatkhachorn, S. (2007). Effect of salt forms and molecular weight of chitosans on in vitro permeability enhancement in intestinal epithelial cells (Caco-2). Pharmaceutical development and technology, 12(5), 447-455. Peng, C., Wang, Q., Jiao, R., Xu, Y., Han, N., Wang, W., Zhu, C., & Li, F. (2021). A novel chondroitin sulfate E from Dosidicus gigas cartilage and its antitumor metastatic activity. Carbohydrate Polymers, 262, 117971. https://doi.org/https://doi.org/10.1016/j.carbpol.2021.117971 Perveen, T., Razi, F., Haider, S., Qayyum, H., & Haleem, D. J. (2013). Antidepressant and anxiolytic effects of cod liver oil in rats. Pak. Vet. J, 33, 57-59. Pillai, C. K. S., Paul, W., & Sharma, C. P. (2009). Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Progress in Polymer Science, 34(7), 641-678. https://doi.org/https://doi.org/10.1016/j.progpolymsci.2009.04.001 Rinaudo, M. (2006). Chitin and chitosan: Properties and applications. Progress in Polymer Science, 31(7), 603-632. https://doi.org/https://doi.org/10.1016/j.progpolymsci.2006.06.001 Rohman, A., & Che Man, Y. (2013). Application of FTIR spectroscopy for monitoring the stabilities of selected vegetable oils during thermal oxidation. International Journal of Food Properties, 16(7), 1594-1603. Sami El-banna, F., Mahfouz, M. E., Leporatti, S., El-Kemary, M., & AN Hanafy, N. (2019). Chitosan as a natural copolymer with unique properties for the development of hydrogels. Applied Sciences, 9(11), 2193. Sarmento, B., Ferreira, D., Veiga, F., & Ribeiro, A. (2006). Characterization of insulin-loaded alginate nanoparticles produced by ionotropic pre-gelation through DSC and FTIR studies. Carbohydrate Polymers, 66(1), 1-7. https://doi.org/https://doi.org/10.1016/j.carbpol.2006.02.008 Sharma, R., Kuche, K., Thakor, P., Bhavana, V., Srivastava, S., Mehra, N. K., & Jain, S. (2022). Chondroitin Sulfate: Emerging biomaterial for biopharmaceutical purpose and tissue engineering. Carbohydrate Polymers, 286, 119305. https://doi.org/https://doi.org/10.1016/j.carbpol.2022.119305 Shin, J.-A., Akoh, C. C., & Lee, K.-T. (2010). Enzymatic interesterification of anhydrous butterfat with flaxseed oil and palm stearin to produce low-trans spreadable fat. Food Chemistry, 120(1), 1-9. Shin, S., You, S., An, B., & Kang, C. (2006). Study on Extraction of Mucopolysaccharide-protein Containing Chondroitin Sulfate from Chicken Keel Cartilage Electrophoresis. Asian-australasian journal of animal sciences, 19(4), 601-604. Shionoya, K., Suzuki, T., Takada, M., Sato, K., Onishi, S., Dohmae, N., Nishino, K., Wada, T., Linhardt, R. J., Toida, T., & Higashi, K. (2022). Comprehensive analysis of chondroitin sulfate and aggrecan in the head cartilage of bony fishes: Identification of proteoglycans in the head cartilage of sturgeon. International Journal of Biological Macromolecules, 208, 333-342. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2022.03.125 Sood, A., Gupta, A., & Agrawal, G. (2021). Recent advances in polysaccharides based biomaterials for drug delivery and tissue engineering applications. Carbohydrate Polymer Technologies and Applications, 2, 100067. https://doi.org/https://doi.org/10.1016/j.carpta.2021.100067 Soppimath, K. S., Aminabhavi, T. M., Kulkarni, A. R., & Rudzinski, W. E. (2001). Biodegradable polymeric nanoparticles as drug delivery devices. Journal of Controlled Release, 70(1), 1-20. https://doi.org/https://doi.org/10.1016/S0168-3659(00)00339-4 Stojanovska, E., Canbay, E., Pampal, E. S., Calisir, M. D., Agma, O., Polat, Y., Simsek, R., Gundogdu, N. S., Akgul, Y., & Kilic, A. (2016). A review on non-electro nanofibre spinning techniques. RSC advances, 6(87), 83783-83801. Sui, W., Huang, L., Wang, J., & Bo, Q. (2008). Preparation and properties of chitosan chondroitin sulfate complex microcapsules. Colloids and Surfaces B: Biointerfaces, 65(1), 69-73. https://doi.org/https://doi.org/10.1016/j.colsurfb.2008.02.022 Tacias-Pascacio, V. G., Morellon-Sterling, R., Siar, E.-H., Tavano, O., Berenguer-Murcia, Á., & Fernandez-Lafuente, R. (2020). Use of Alcalase in the production of bioactive peptides: A review. International Journal of Biological Macromolecules, 165, 2143-2196. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2020.10.060 Tarhan, O., & Spotti, M. J. (2021). Nutraceutical delivery through nano-emulsions: General aspects, recent applications and patented inventions. Colloids and Surfaces B: Biointerfaces, 200, 111526. https://doi.org/https://doi.org/10.1016/j.colsurfb.2020.111526 Tengku‐Rozaina, T. M., & Birch, E. J. (2013). Enrichment of omega‐3 fatty acids of refined hoki oil. Journal of the American Oil Chemists' Society, 90(8), 1111-1119. Thakur, V. K., & Voicu, S. I. (2016). Recent advances in cellulose and chitosan based membranes for water purification: A concise review. Carbohydrate Polymers, 146, 148-165. https://doi.org/https://doi.org/10.1016/j.carbpol.2016.03.030 Torres, C. F., Munir, F., Blanco, R. M., Otero, C., & Hill, C. G. (2002). Catalytic transesterification of corn oil and tristearin using immobilized lipases from Thermomyces lanuginosa. Journal of the American Oil Chemists' Society, 79(8), 775-781. Valcarcel, J., Novoa-Carballal, R., Pérez-Martín, R. I., Reis, R. L., & Vázquez, J. A. (2017). Glycosaminoglycans from marine sources as therapeutic agents. Biotechnology Advances, 35(6), 711-725. https://doi.org/https://doi.org/10.1016/j.biotechadv.2017.07.008 Volodkin, D. V., Petrov, A. I., Prevot, M., & Sukhorukov, G. B. (2004). Matrix polyelectrolyte microcapsules: new system for macromolecule encapsulation. Langmuir, 20(8), 3398-3406. Volpi, N., & Maccari, F. (2003). Purification and characterization of hyaluronic acid from the mollusc bivalve Mytilus galloprovincialis. Biochimie, 85(6), 619-625. https://doi.org/https://doi.org/10.1016/S0300-9084(03)00083-X Vongsvivut, J., Heraud, P., Zhang, W., Kralovec, J. A., McNaughton, D., & Barrow, C. J. (2012). Quantitative determination of fatty acid compositions in micro-encapsulated fish-oil supplements using Fourier transform infrared (FTIR) spectroscopy. Food Chemistry, 135(2), 603-609. https://doi.org/https://doi.org/10.1016/j.foodchem.2012.05.012 Wang, J., & Zhuang, S. (2022). Chitosan-based materials: Preparation, modification and application. Journal of Cleaner Production, 355, 131825. https://doi.org/https://doi.org/10.1016/j.jclepro.2022.131825 Woranuch, S., & Yoksan, R. (2013). Eugenol-loaded chitosan nanoparticles: I. Thermal stability improvement of eugenol through encapsulation. Carbohydrate Polymers, 96(2), 578-585. https://doi.org/https://doi.org/10.1016/j.carbpol.2012.08.117 Yang, K.-R., Tsai, M.-F., Shieh, C.-J., Arakawa, O., Dong, C.-D., Huang, C.-Y., & Kuo, C.-H. (2021). Ultrasonic-Assisted Extraction and Structural Characterization of Chondroitin Sulfate Derived from Jumbo Squid Cartilage. Foods, 10(10), 2363. Zhang, Y., Chan, J. W., Moretti, A., & Uhrich, K. E. (2015). Designing polymers with sugar-based advantages for bioactive delivery applications. Journal of Controlled Release, 219, 355-368. https://doi.org/https://doi.org/10.1016/j.jconrel.2015.09.053 Zhao, T., Zhou, Y., Mao, G., Zou, Y., Zhao, J., Bai, S., Yang, L., & Wu, X. (2013). Extraction, purification and characterisation of chondroitin sulfate in Chinese sturgeon cartilage. Journal of the Science of Food and Agriculture, 93(7), 1633-1640. Zhou, C., Mi, S., Li, J., Gao, J., Wang, X., & Sang, Y. (2020). Purification, characterisation and antioxidant activities of chondroitin sulphate extracted from Raja porosa cartilage. Carbohydrate Polymers, 241, 116306. https://doi.org/https://doi.org/10.1016/j.carbpol.2020.116306 Zhujun, Z., Guolei, Z., & Fengmei, S. (2008). Extraction of the chondroitin sulfate from cartilage of sheep. Journal of Agricultural University of Hebei. Zou, Z., Wei, M., Fang, J., Dai, W., Sun, T., Liu, Q., Gong, G., Liu, Y., Song, S., Ma, F., Wang, L., Huang, L., & Wang, Z. (2020). Preparation of chondroitin sulfates with different molecular weights from bovine nasal cartilage and their antioxidant activities. International Journal of Biological Macromolecules, 152, 1047-1055. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2019.10.192
|