中文文獻
[1] 大椽股份有限公司(DIGITIMES Inc),2019,https://www.digitimes.com.tw/,臺北。
[2] 工研院 IEK 電子智網,2013,
https://www2.itis.org.tw/PptReport/PPTReport_Detail.aspx?
rpno=3012&industry=1&ctgy=1&free=,臺北。
[3] 工業技術研究院 ITIS,2019,https://www.itri.org.tw/,臺北。
[4] 中國工業評論,2015,以 CPS為核心的智慧化大資料創值體系,
http://www.chinaeinet.com/article/detail.aspx?id=10929,中國。
[5] 日月光投資控股公司,2019,網址 http://www.aseglobal.com,臺北。
[6] 田彥章,2016,探討臺灣行動銀行對客戶使用意願影響因素之研究,中興大學資訊管理學系所,
碩士論文。
[7] 行政院生產力4.0發展方案,2015, Taiwan Productivity 4.0 Initiativ
http://www.bost.ey.gov.tw/cp.aspx?n=9D3C94480910C6A4,臺北。
[8] 吳琬瑜,2018,製造全球化的逆襲,天下雜誌,643期,臺北。
[9] 吳萬益,2015,企業研究方法 SPSS 操作與應用,問卷統計分析實務,華泰文化,臺北。
[10] 沈靜君,2014,運用 UTAUT 及 TTF 探討從業人員對電子貨架標籤之接受度,國立臺北科技大
學工業工程與管理學院,碩士論文。
[11] 沈靜蕙,2015,台灣封裝測試業競爭策略及未來展望,國立中興大學高階經理人管理學院,
碩士論文。
[12] 香港生產力促進局,2016,工業4.0運作流程圖文說明https://www.hkpc.org/zh-
HK/industry-support-services/latest-information/6053-i4-0,臺北。
[13] 國家教育研究院,2000,http://terms.naer.edu.tw/detail/1304612/?index=9,
臺北。
[14] 張偉豪,2011, SEM 論文寫作不求人,三星統計,高雄。
[15] 產業價值鏈資訊平,2018,https://ic.tpex.org.tw/introduce.php?l=zh-
tw&ic=D000,
[16] 陳姝妤,2011,運用 UTAUT 及 TTF 探討教職人員對校園安全應用 RFID技術之接受模式,
國立臺北科技大學工業工程與管理系,碩士論文。
[17] 陳琬婷,2018,影響消費者雲支付使用意願之研究,淡江大學管理科學學系,碩士論文[18] 陳寬裕,2010,論文統計分析實務: SPSS 與 AMOS 的運用,五南圖書,臺北。
[19] 經濟部工業局智慧電子產業計劃推動辦公室,2018,https://www.sipo.org.tw/industry-
overview.html,臺北。
[20] 欒斌、陳苡任合著,2013,電子商務企業電子化的內涵-企業流程再造,臺北。
英文文獻
[1] Adams, D. A., Nelson, R. R., & Todd, P. A. (1992). Perceived usefulness, ease of use, and usage of information technology: A replication. MIS Quarterly, 16(2), 227-247.
[2] Ajzen, I. (1985). From intention to actions: A theory of planned behavior.in Kuhl, J & Bechmann, J (Eds), Action-control: From cognition to behavior. Springer, Heidelberg, 11-39.
[3] Ambra, J. D., & Rice, R. E. (2001). Emerging factors in user evaluation of the World Wide Web. Information & Management, 38(6), 373-384.
[4] Bagozzi, Richard P, & Youjae Yi (1988). On the evaluation of structural equation models. Journal of the academy of Marketing Science,16 (1), 74–94.
[5] Bandura, A. (1986). Social fundations of thought and action: A social cognitive theory, Prentice-Hall (Englewood Cliffs, N.J.).
[6] Benbasat, I., Dexter, A. S., & Todd, P. (1986). An experimental program Investigating color-enhanced and graphical information presentation: An integration of the findings. Communications of the ACM, 29(11), 1094-1105.
[7] Bhattacherjee, A. (2001). Understanding information systems continuance: An expectation-confirmation model. MIS Quarterly, 25(3), 351-370.
[8] Bozorgkhou, N. (2015). An internet shopping user adoption model using an integrated TTF and UTAUT: Evidence from iranian consumers. Management Science Letters, 5(2), 199-204.
[9] Chang, H.H. (2010). Task technology fit and user acceptance of online auctions. International Journal of Human Computer Science, 68, 69-89.
[10] Cheng, J.M., Sheen, G., & Lou, G. (2006). Consumer acceptance of the internet as a channel of distribution in Taiwan- a channel function perspective. Technovation, 26, 856-864.
[11] Compeau, D. R., & Higgins, C. A. (1995). Computer self-efficacy: Development of a measure and initial test. MIS Quarterly, 19(2), 189-211.
[12] Compeau, D. R., Higgins, C. A., & Huff, S. (1999). Social cognitive theory and individual reactions to computing technology: A longitudinal study. MIS Quarterly, 23(2), 145-158.
[13] Cooper, R. B., & Zmud, R. W. (1990). Information technology implementation research: A technological diffusion approach. Management Science, 36(2), 123-139.
[14] D’Ambra J,Wilson C S (2004). Explaining perceived performance of the world wide web: Uncertainty and the task-technology fit model, 14(4):294-310
[15] Davis, B., & Wilder, C. (1998). False starts, strong finishes-companies are saving troubled IT projects by admitting their mistakes, stepping back, scaling back, and moving on. Information Week, 30, 41-43.
[16] Davis, F. D. (1986). A technology acceptance model for empirically testing new end-user information systems: Theory and results. Unpublished doctoral dissertation, massachusetts institute of technology, Sloan School of Management.
[17] Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319-340.
[18] Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of 2 theoretical models. Management Science, 35(8), 982-1003.
[19] Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1992). Extrinsic and intrinsic motivation to use computers in the workplace. Journal of Applied Social Psychology, 22(14), 1111-1132.
[20] Davis, F. D. (1993). User acceptance of information technology: system characteristics, user perceptions, and behavioral impacts. International Journal of Man-Machine Studies, 38(3), 475–487.
[21] Dishaw, M. T., & Strong, D. M. (1999). Extending the technology acceptance model with task-technology fit constructs. Information & Management, 36(1), 9-21.
[22] Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention and behavior:An introduction to theory and research. Addison-Wesley, Reading, MA.
[23] Goodhue, D. L. (1995). Understanding user evaluations of information systems. Management Science, 41(12), 1827-1844.
[24] Goodhue, D. L. (1998). Development and measurement validity of a task-technology fit instrument for user evaluatios of information systems. Decision Sciences, 29(1), 105-138.
[25] Goodhue, D. L., & Thompson, R. L. (1995). Task-technology fit and individual performance. MIS Quarterly, 19(2), 213-236.
[26] Goodhue, D. L., Klein, B. D., & March, S. T. (2000). User evaluation of IS as surrogates for objective performance. Information & Management, 38(2), 87-101.
[27] Igbaria, M., & Iivari, J. (1995). The effects of self-efficacy on computer usage. Omega, 23(6), 587–605.
[28] Igbaria, M., Zinatelli, N., Cragg, P., & Cavaye, A. (1997). Personal computing acceptance factors in small firms: A structural equation model. MIS Quarterly, 21(3), 279–305.
[29] Igbaria, M., Zinatelli, N., Cragg, P., & Cavaye, A. (1997). Personal computing acceptance factors in small firms: A structural equation model. MIS Quarterly, 21(3), 279–305.
[30] Junglas, I., Abraham, C., & Watson, R. T. (2008). Task-technology fit for mobile locatable information systems. Decision Support Systems, 45(4), 1046-1057.
[31] Karahanna, E., & Straub, D. W. (1999a). The psychological origins of perceived usefulness and ease-of-use. Information & Management, 35(4), 237-250.
[32] Karahanna, E., Straub, D. W., & Chervany, N. L. (1999b). Information technology adoption across time: A cross-sectional comparison of pre-adoption and post-adoption beliefs. MIS Quarterly, 23(2), 183-213.
[33] Karimi, J., Somers, T. M., & Gupta, Y. P. (2004). Impact on environmental uncertainty and task characteristics on user satisfaction with data. Information Systems Research, 15(2), 175-193.
[34] Klopping, I. M., & Mckinney, E. (2004). Extending the technology acceptance model and the task-technology fit model to consumer e-commerce. Information Technology, Learning, and Performance Journal, 22(1), 35-48.
[35] Lee, Jay & Lapira, Edzel & Bagheri, Behrad & Kao, Hung-an. (2013). Recent advances and trends in predictive manufacturing systems in big data environment . Manufacturing Letters 1.
[36] Legris, P., Ingham, J., & Collerette, P. (2003). Why do people use information technology? A critical review of the technology acceptance model. Information & Management, 40(3), 191-204.
[37] Lucas, H., & Spitler, V. (1999). Technology use and performance: A field study of broker workstations. Decision Science, 30, 291-311.
[38] Pagani, M. (2006). Determinants of adoption of high speed data services in the business market: Evidence for a combined technology acceptance model with task technology fit model. Information & Management, 43(7), 847-860.
[39] Rogers, E. M. (1983). Diffusion of Innovations (3rd). New York:Free Press
[40] Taylor, S., & Todd, P. (1995). Assessing IT usage: The role of prior experience. MIS Quarterly, 19(4), 561-570.
[41] Thompson, R. L., Higgins, C. A., & Howell, J. M. (1991). Personal computing: Toward a conceptual model of utilization. MIS Quarterly, 15(1), 125-143.
[42] Tjahjono, B. (2009). Supporting shop floor workers with a multimedia task-oriented information system. Computers in Industry, 60(4), 257–265.
[43] Triandis, H. C. (1979). Values, attitudes, and interpersonal behavior. Nebraska Symposium on Motivation, 27, 195–259.
[44] Vallerand, R. J. (1997). Toward a hierarchical model of intrinsic and
extrinsic motivation. In M. P. Zanna (Ed.), Advances in experimental social psychology (Vol. 29, pp. 271–360). San Diego:Academic.
[45] Venkatesh, V., Davis, G. B., Davis, Fred D., & Morris, M. G. (2003). User acceptance of information technology: Toward a unified view MIS Quarterly, 27(3), 425-478.
[46] Vessey, I. (1991). Cognitive fit: A theory-based analysis of the graphs versus tables literature. Decision Sciences, 22(2), 219-240.
[47] Vessey, I., & Galleta, D. (1991). Cognitive fit: An empirical study of information acquisition. Information Systems Research, 2(1), 63-84.
[48] Zhou, T., Lu, Y., & Wang, B. (2010).Integrating TTF and UTAUT to explain mobile banking user adoption. Computers in human behavior, 26, 760-767.