Adel, A., Alalm, M. G., El-Etriby, H. K., & Boffito, D. C. (2020). Optimization and mechanism insights into the sulfamethazine degradation by bimetallic ZVI/Cu nanoparticles coupled with H2O2. Journal of Environmental Chemical Engineering, 8(5), 104341.
Ahmad, T., Ahmad, K., & Alam, M. (2016). Sustainable management of water treatment sludge through 3 ‘R’concept. Journal of Cleaner Production, 124, 1-13.
Ahmed, M. B., Zhou, J. L., Ngo, H. H., & Guo, W. (2015). Adsorptive removal of antibiotics from water and wastewater: progress and challenges. Science of the Total Environment, 532, 112-126.
Ahmed, N., Vione, D., Rivoira, L., Carena, L., Castiglioni, M., & Bruzzoniti, M. C. (2021). A review on the degradation of pollutants by fenton-like systems based on zero-valent iron and persulfate: Effects of reduction potentials, pH, and anions occurring in waste waters. Molecules, 26(15), 4584.
Ali, J., Shahzad, A., Wang, J., Ifthikar, J., Lei, W., Aregay, G. G., Chen, Z., & Chen, Z. (2021). Modulating the redox cycles of homogenous Fe (III)/PMS system through constructing electron rich thiomolybdate centres in confined layered double hydroxides. Chemical Engineering Journal, 408, 127242.
Arsand, J. B., Hoff, R. B., Jank, L., Bussamara, R., Dallegrave, A., Bento, F. M., Kmetzsch, L., Falção, D. A., Peralba, M. d. C. R., & de Araujo Gomes, A. (2020). Presence of antibiotic resistance genes and its association with antibiotic occurrence in Dilúvio River in southern Brazil. Science of the Total Environment, 738, 139781.
Babuponnusami, A., & Muthukumar, K. (2014). A review on Fenton and improvements to the Fenton process for wastewater treatment. Journal of Environmental Chemical Engineering, 2(1), 557-572.
Bai, Z., Yang, Q., & Wang, J. (2017). Degradation of sulfamethazine antibiotics in Fenton‐like system using Fe3O4 magnetic nanoparticles as catalyst. Environmental Progress & Sustainable Energy, 36(6), 1743-1753.
Barhoumi, N., Olvera-Vargas, H., Oturan, N., Huguenot, D., Gadri, A., Ammar, S., Brillas, E., & Oturan, M. A. (2017). Kinetics of oxidative degradation/mineralization pathways of the antibiotic tetracycline by the novel heterogeneous electro-Fenton process with solid catalyst chalcopyrite. Applied Catalysis B: Environmental, 209, 637-647.
Boy-Roura, M., Mas-Pla, J., Petrovic, M., Gros, M., Soler, D., Brusi, D., & Menció, A. (2018). Towards the understanding of antibiotic occurrence and transport in groundwater: Findings from the Baix Fluvià alluvial aquifer (NE Catalonia, Spain). Science of the Total Environment, 612, 1387-1406.
Budaev, S. L., Batoeva, A. A., & Tsybikova, B. A. (2014). Effect of Fenton-like reactions on the degradation of thiocyanate in water treatment. Journal of Environmental Chemical Engineering, 2(4), 1907-1911.
Calloway, D. (1997). Beer-lambert law. Journal of Chemical Education, 74(7), 744.
Chen, J., Liu, Y.-S., Zhang, J.-N., Yang, Y.-Q., Hu, L.-X., Yang, Y.-Y., Zhao, J.-L., Chen, F.-R., & Ying, G.-G. (2017). Removal of antibiotics from piggery wastewater by biological aerated filter system: treatment efficiency and biodegradation kinetics. Bioresource technology, 238, 70-77.
Cheng, X., Guo, H., Li, W., Yang, B., Wang, J., Zhang, Y., & Du, E. (2020). Metal-free carbocatalysis for persulfate activation toward nonradical oxidation: Enhanced singlet oxygen generation based on active sites and electronic property. Chemical Engineering Journal, 396, 125107.
Clarizia, L., Russo, D., Di Somma, I., Marotta, R., & Andreozzi, R. (2017). Homogeneous photo-Fenton processes at near neutral pH: a review. Applied Catalysis B: Environmental, 209, 358-371.
dos Santos, A. J., Kronka, M. S., Fortunato, G. V., & Lanza, M. R. (2021). Recent advances in electrochemical water technologies for the treatment of antibiotics: A short review. Current Opinion in Electrochemistry, 26, 100674.
Du, H., Yang, Z., Tian, Z., Huang, M., Yang, W., Zhang, L., & Li, A. (2018). Enhanced removal of trace antibiotics from turbid water in the coexistence of natural organic matters using phenylalanine-modified-chitosan flocculants: effect of flocculants’ molecular architectures. Chemical Engineering Journal, 333, 310-319.
Elmolla, E., & Chaudhuri, M. (2009). Optimization of Fenton process for treatment of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution. Journal of Hazardous Materials, 170(2-3), 666-672.
Hao, L., Okano, K., Zhang, C., Zhang, Z., Lei, Z., Feng, C., Utsumi, M., Ihara, I., Maseda, H., & Shimizu, K. (2019). Effects of levofloxacin exposure on sequencing batch reactor (SBR) behavior and microbial community changes. Science of the Total Environment, 672, 227-238.
Hashemzadeh, B., Alamgholiloo, H., Pesyan, N. N., Asgari, E., Sheikhmohammadi, A., Yeganeh, J., & Hashemzadeh, H. (2021). Degradation of ciprofloxacin using hematite/MOF nanocomposite as a heterogeneous Fenton-like catalyst: A comparison of composite and core− shell structures. Chemosphere, 281, 130970.
Hashemzehi-Goonaki, A., & Saffari, J. (2015). Microwave Synthesis of Fe2O3 Nanoparticles and Its Catalyst Investigation in One-pot Synthesis of Naphthoxazinone Derivatives. Journal of Nanostructures, 5(4), 385-393.
Huang, A., Yan, M., Lin, J., Xu, L., Gong, H., & Gong, H. (2021). A review of processes for removing antibiotics from breeding wastewater. International Journal of Environmental Research and Public Health, 18(9), 4909.
Huang, W., Fu, B., Fang, S., Wang, F., Shao, Q., Du, W., Fang, F., Feng, Q., Cao, J., & Luo, J. (2021). Insights into the accelerated venlafaxine degradation by cysteine-assisted Fe2+/persulfate: key influencing factors, mechanisms and transformation pathways with DFT study. Science of the Total Environment, 793, 148555.
Hutchings, M. I., Truman, A. W., & Wilkinson, B. (2019). Antibiotics: past, present and future. Current opinion in microbiology, 51, 72-80.
Iakovides, I., Michael-Kordatou, I., Moreira, N. F., Ribeiro, A. R., Fernandes, T., Pereira, M. F. R., Nunes, O. C., Manaia, C. M., Silva, A. M., & Fatta-Kassinos, D. (2019). Continuous ozonation of urban wastewater: Removal of antibiotics, antibiotic-resistant Escherichia coli and antibiotic resistance genes and phytotoxicity. Water research, 159, 333-347.
Iboukhoulef, H., Douani, R., Amrane, A., Chaouchi, A., & Elias, A. (2019). Heterogeneous Fenton like degradation of olive Mill wastewater using ozone in the presence of BiFeO3 photocatalyst. Journal of Photochemistry and Photobiology A: Chemistry, 383, 112012.
Jaafarzadeh, N., Ghanbari, F., & Ahmadi, M. (2017). Catalytic degradation of 2, 4-dichlorophenoxyacetic acid (2, 4-D) by nano-Fe2O3 activated peroxymonosulfate: influential factors and mechanism determination. Chemosphere, 169, 568-576.
Jiang, F., Li, Y., Zhou, W., Yang, Z., Ning, Y., Liu, D., Tang, Z., Yang, S., Huang, H., & Wang, G. (2020). Enhanced degradation of monochlorobenzene in groundwater by ferrous iron/persulfate process with cysteine. Chemical Engineering Journal, 387, 124048.
Kerber, S., Barr, T., Mann, G., Brantley, W., Papazoglou, E., & Mitchell, J. (1998). The complementary nature of X-ray photoelectron spectroscopy and angle-resolved X-ray diffraction part I: background and theory. Journal of materials engineering and performance, 7, 329-333.
Kovalakova, P., Cizmas, L., McDonald, T. J., Marsalek, B., Feng, M., & Sharma, V. K. (2020). Occurrence and toxicity of antibiotics in the aquatic environment: A review. Chemosphere, 251, 126351.
Lee, C., & Sedlak, D. L. (2009). A novel homogeneous Fenton-like system with Fe (III)–phosphotungstate for oxidation of organic compounds at neutral pH values. Journal of Molecular Catalysis A: Chemical, 311(1-2), 1-6.
Li, X., Huang, Y., Li, C., Shen, J., & Deng, Y. (2015). Degradation of pCNB by Fenton like process using α-FeOOH. Chemical Engineering Journal, 260, 28-36.
Li, Y., Chen, J., Zhong, J., Yang, B., Yang, Z., Shih, K., & Feng, Y. (2022). Acceleration of traces of Fe3+-activated peroxymonosulfate by natural pyrite: A novel cocatalyst for improving Fenton-like processes. Chemical Engineering Journal, 435, 134893.
Li, Y., Zhang, B., Liu, X., Zhao, Q., Zhang, H., Zhang, Y., Ning, P., & Tian, S. (2018). Ferrocene-catalyzed heterogeneous Fenton-like degradation mechanisms and pathways of antibiotics under simulated sunlight: a case study of sulfamethoxazole. Journal of Hazardous Materials, 353, 26-34.
Liu, P., Wu, Z., Abramova, A. V., & Cravotto, G. (2021). Sonochemical processes for the degradation of antibiotics in aqueous solutions: A review. Ultrasonics Sonochemistry, 74, 105566.
Liu, Y., Guo, H., Zhang, Y., Tang, W., Cheng, X., & Li, W. (2018). Heterogeneous activation of peroxymonosulfate by sillenite Bi25FeO40: singlet oxygen generation and degradation for aquatic levofloxacin. Chemical Engineering Journal, 343, 128-137.
Mahmoud, M. E., Amira, M. F., Daniele, S., El Nemr, A., Abouelanwar, M. E., & Morcos, B. M. (2022). Adsorptive removal of Ag/Au quantum dots onto covalent organic frameworks@ magnetic zeolite@ arabic gum hydrogel and their catalytic microwave-Fenton oxidative degradation of Rifampicin antibiotic. Journal of Colloid and Interface Science, 624, 602-618.
Mainardis, M., Buttazzoni, M., & Goi, D. (2020). Up-flow anaerobic sludge blanket (UASB) technology for energy recovery: a review on state-of-the-art and recent technological advances. Bioengineering, 7(2), 43.
Martínez-Costa, J., Rivera-Utrilla, J., Leyva-Ramos, R., Sánchez-Polo, M., Velo-Gala, I., & Mota, A. (2018). Individual and simultaneous degradation of the antibiotics sulfamethoxazole and trimethoprim in aqueous solutions by Fenton, Fenton-like and photo-Fenton processes using solar and UV radiations. Journal of Photochemistry and Photobiology A: Chemistry, 360, 95-108.
Mashayekh-Salehi, A., Akbarmojeni, K., Roudbari, A., van der Hoek, J. P., Nabizadeh, R., Dehghani, M. H., & Yaghmaeian, K. (2021). Use of mine waste for H2O2-assisted heterogeneous Fenton-like degradation of tetracycline by natural pyrite nanoparticles: Catalyst characterization, degradation mechanism, operational parameters and cytotoxicity assessment. Journal of Cleaner Production, 291, 125235.
Miralles-Cuevas, S., Oller, I., Ruíz-Delgado, A., Cabrera-Reina, A., Cornejo-Ponce, L., & Malato, S. (2019). EDDS as complexing agent for enhancing solar advanced oxidation processes in natural water: Effect of iron species and different oxidants. Journal of Hazardous Materials, 372, 129-136.
Mohammadi, L., Kamani, H., Asghari, A., Mohammadpour, A., Golaki, M., Rahdar, A., & Kyzas, G. Z. (2022). Removal of amoxicillin from aqueous media by fenton-like sonolysis/H2O2 process using zero-valent iron nanoparticles. Molecules, 27(19), 6308.
Mustafa, S., Tasleem, S., & Naeem, A. (2004). Surface charge properties of Fe2O3 in aqueous and alcoholic mixed solvents. Journal of Colloid and Interface Science, 275(2), 523-529.
Nappi, A. J., & Vass, E. (1997). Comparative studies of enhanced iron-mediated production of hydroxyl radical by glutathione, cysteine, ascorbic acid, and selected catechols. Biochimica et Biophysica Acta (BBA)-General Subjects, 1336(2), 295-302.
Nasrollahi, N., Vatanpour, V., & Khataee, A. (2022). Removal of antibiotics from wastewaters by membrane technology: Limitations, successes, and future improvements. Science of the Total Environment, 156010.
Neta, P., Huie, R. E., & Ross, A. B. (1988). Rate constants for reactions of inorganic radicals in aqueous solution. Journal of Physical and Chemical Reference Data, 17(3), 1027-1284.
Nguyen, T.-T., Bui, X.-T., Luu, V.-P., Nguyen, P.-D., Guo, W., & Ngo, H.-H. (2017). Removal of antibiotics in sponge membrane bioreactors treating hospital wastewater: Comparison between hollow fiber and flat sheet membrane systems. Bioresource technology, 240, 42-49.
Nichela, D. A., Berkovic, A. M., Costante, M. R., Juliarena, M. P., & Einschlag, F. S. G. (2013). Nitrobenzene degradation in Fenton-like systems using Cu (II) as catalyst. Comparison between Cu (II)-and Fe (III)-based systems. Chemical Engineering Journal, 228, 1148-1157.
Nie, Y., Zhang, L., Li, Y.-Y., & Hu, C. (2015). Enhanced Fenton-like degradation of refractory organic compounds by surface complex formation of LaFeO3 and H2O2. Journal of Hazardous Materials, 294, 195-200.
Nieto, L. M., Hodaifa, G., Rodríguez, S., Giménez, J. A., & Ochando, J. (2011). Degradation of organic matter in olive-oil mill wastewater through homogeneous Fenton-like reaction. Chemical Engineering Journal, 173(2), 503-510.
Pan, T., Wang, Y., Yang, X., Huang, X.-f., & Qiu, R.-l. (2020). Gallic acid accelerated BDE47 degradation in PMS/Fe (III) system: Oxidation intermediates autocatalyzed redox cycling of iron. Chemical Engineering Journal, 384, 123248.
Pan, Y., Qin, R., Hou, M., Xue, J., Zhou, M., Xu, L., & Zhang, Y. (2022). The interactions of polyphenols with Fe and their application in Fenton/Fenton-like reactions. Separation and Purification Technology, 121831.
Peng, J., Zhou, H., Liu, W., Ao, Z., Ji, H., Liu, Y., Su, S., Yao, G., & Lai, B. (2020). Insights into heterogeneous catalytic activation of peroxymonosulfate by natural chalcopyrite: pH-dependent radical generation, degradation pathway and mechanism. Chemical Engineering Journal, 397, 125387.
Pi, Y., Ma, L., Zhao, P., Cao, Y., Gao, H., Wang, C., Li, Q., Dong, S., & Sun, J. (2018). Facile green synthetic graphene-based Co-Fe Prussian blue analogues as an activator of peroxymonosulfate for the degradation of levofloxacin hydrochloride. Journal of Colloid and Interface Science, 526, 18-27.
Polianciuc, S. I., Gurzău, A. E., Kiss, B., Ştefan, M. G., & Loghin, F. (2020). Antibiotics in the environment: causes and consequences. Medicine and pharmacy reports, 93(3), 231.
Prasannamedha, G., & Kumar, P. S. (2020). A review on contamination and removal of sulfamethoxazole from aqueous solution using cleaner techniques: Present and future perspective. Journal of Cleaner Production, 250, 119553.
Prescott, J. F. (2014). The resistance tsunami, antimicrobial stewardship, and the golden age of microbiology. Veterinary microbiology, 171(3-4), 273-278.
Qi, C., Wen, Y., Zhao, Y., Dai, Y., Li, Y., Xu, C., Yang, S., & He, H. (2022). Enhanced degradation of organic contaminants by Fe (III)/peroxymonosulfate process with L-cysteine. Chinese Chemical Letters, 33(4), 2125-2128.
Rocha, M. A. M., Ferreira, P., Coimbra, M. A., & Nunes, C. (2020). Mechanism of iron ions sorption by chitosan-genipin films in acidic media. Carbohydrate polymers, 236, 116026.
Sabatino, R., Furia, F., Eckert, E. M., Minella, M., Corno, G., Di Cesare, A., & Vione, D. (2022). The ZVI-Fenton process affects the total load of human pathogenic bacteria in wastewater samples. Journal of Water Process Engineering, 47, 102668.
Sabri, N., Schmitt, H., Van Der Zaan, B., Gerritsen, H., Rijnaarts, H., & Langenhoff, A. (2021). Performance of full scale constructed wetlands in removing antibiotics and antibiotic resistance genes. Science of the Total Environment, 786, 147368.
Salari, M. (2021). Optimisation using Taghuchi method and Heterogeneous Fenton-like Process with Fe3O4/MWCNTS Nano-Composites as the Catalyst for Removal an Antibiotic. Advances in Applied NanoBio-Technologies, 2(3), 46-53.
Sarker, P., Lei, X., Taylor, K., Holmes, W., Yan, H., Cao, D., Zappi, M. E., & Gang, D. D. (2023). Evaluation of the adsorption of sulfamethoxazole (SMX) within aqueous influents onto customized ordered mesoporous carbon (OMC) adsorbents: Performance and elucidation of key adsorption mechanisms. Chemical Engineering Journal, 454, 140082.
Sarmento, A. P., Borges, A. C., Matos, A. T. d., & Romualdo, L. L. (2020). Sulfamethoxazole and trimethoprim degradation by Fenton and Fenton-like processes. Water, 12(6), 1655.
Shi, X., Ma, K., Gu, Y., Zhang, W., & Sun, J. (2022). Accelerated degradation of sulfadiazine by wet mechanochemical synthesized nano-pyrite FeS2 based Fenton system: Performance, mechanism and applicability. Separation and Purification Technology, 292, 121060.
Talbi, K., Mammeri, L., Lekikot, B., Benssassi, M. E. H., & Sehili, T. (2022). Degradation of sulfamethoxazole by a new modified Fenton-like process using Cu (II)-nitrilotriacetic acid complex as catalyst at neutral pH in aqueous medium. Separation and Purification Technology, 302, 122052.
Tang, S., Liu, H., Zhu, E., Zhao, T., Wang, Z., Jiao, T., Zhang, Q., & Yuan, D. (2022). Boosting peroxydisulfate Fenton-like reaction by protocatechuic acid chelated-Fe2+ with broad pH range. Separation and Purification Technology, 301, 122056.
Teixeira, S., Delerue-Matos, C., & Santos, L. (2012). Removal of sulfamethoxazole from solution by raw and chemically treated walnut shells. Environmental Science and Pollution Research, 19, 3096-3106.
Valizadeh, S., Rasoulifard, M., & Dorraji, M. S. (2014). Modified Fe3O4-hydroxyapatite nanocomposites as heterogeneous catalysts in three UV, Vis and Fenton like degradation systems. Applied Surface Science, 319, 358-366.
Wang, J., Yao, J., Zhu, L., Gao, C., Liu, J., She, S., & Wu, X. (2022). A novel Fe-rectorite composite catalyst synergetic photoinduced peroxymonosulfate activation for efficient degradation of antibiotics. Chemosphere, 289, 133211.
Wang, S., Wang, H., Liu, Y., & Fu, Y. (2020). Effective degradation of sulfamethoxazole with Fe2+-zeolite/peracetic acid. Separation and Purification Technology, 233, 115973.
Wu, Q., Yang, H., Kang, L., Gao, Z., & Ren, F. (2020). Fe-based metal-organic frameworks as Fenton-like catalysts for highly efficient degradation of tetracycline hydrochloride over a wide pH range: Acceleration of Fe (II)/Fe (III) cycle under visible light irradiation. Applied Catalysis B: Environmental, 263, 118282.
Wu, Q., Zou, D., Zheng, X., Liu, F., Li, L., & Xiao, Z. (2022). Effects of antibiotics on anaerobic digestion of sewage sludge: Performance of anaerobic digestion and structure of the microbial community. Science of the Total Environment, 157384.
Xie, D.-H., Guo, P.-C., Zhong, K.-Q., & Sheng, G.-P. (2022). Highly dispersed Co/Fe bimetal in carbonaceous cages as heterogeneous Fenton nanocatalysts for enhanced sulfamethoxazole degradation. Applied Catalysis B: Environmental, 319, 121923.
Yang, X., Yao, L., Wang, Y., Zhang, X., & Ren, P. (2022). Simultaneous removal of algae, microcystins and disinfection byproduct precursors by peroxymonosulfate (PMS)-enhanced Fe (III) coagulation. Chemical Engineering Journal, 445, 136689.
Yin, R., Chen, Y., Hu, J., Lu, G., Zeng, L., Choi, W., & Zhu, M. (2021). Complexes of Fe (III)-organic pollutants that directly activate Fenton-like processes under visible light. Applied Catalysis B: Environmental, 283, 119663.
Yuan, D., Zhang, C., Tang, S., Li, X., Tang, J., Rao, Y., Wang, Z., & Zhang, Q. (2019). Enhancing CaO2 fenton-like process by Fe (II)-oxalic acid complexation for organic wastewater treatment. Water research, 163, 114861.
Zainab, S. M., Junaid, M., Xu, N., & Malik, R. N. (2020). Antibiotics and antibiotic resistant genes (ARGs) in groundwater: A global review on dissemination, sources, interactions, environmental and human health risks. Water research, 187, 116455.
Zeng, S., & Kan, E. (2022). FeCl3-activated biochar catalyst for heterogeneous Fenton oxidation of antibiotic sulfamethoxazole in water. Chemosphere, 306, 135554.
Zhou, P., Zhang, J., Zhang, Y., Zhang, G., Li, W., Wei, C., Liang, J., Liu, Y., & Shu, S. (2018). Degradation of 2, 4-dichlorophenol by activating persulfate and peroxomonosulfate using micron or nanoscale zero-valent copper. Journal of Hazardous Materials, 344, 1209-1219.
Zhuan, R., & Wang, J. (2020). Enhanced degradation and mineralization of sulfamethoxazole by integrating gamma radiation with Fenton-like processes. Radiation Physics and Chemistry, 166, 108457.
Zuorro, A., Fidaleo, M., Fidaleo, M., & Lavecchia, R. (2014). Degradation and antibiotic activity reduction of chloramphenicol in aqueous solution by UV/H2O2 process. Journal of environmental management, 133, 302-308.
環境檢驗所(民92年11月17日)。廢棄物中灰分、可燃分測定方法(NIEA R205.01C)。臺北市:行政院環境保護署。取自:https://www.epa.gov.tw/niea/5AB9DFB26C3FA13E/fb70c258-7fd3-4fff-9518-a4b2a6f7faa4
環境檢驗所(民98年5月11日)。一般廢棄物(垃圾)水分測定方法-間接測定法(NIEA R213.21C)。臺北市:行政院環境保護署。取自:https://www.epa.gov.tw/niea/5AB9DFB26C3FA13E/ 28d675cb-e75f-414c-9252-56a616f99fab
許惟喆,(2022)磷酸銀/鉬酸鉍/氧化銅鉍複合光觸媒材料之光催化活性測試與表面性質分析,國立高雄科技大學,碩士論文。蔡順其,(2021)以奈米碳管吸附水中磺胺甲噁唑和磺胺二甲嘧啶之研究,國立高雄科技大學,碩士論文。