|
REFERENCES [1]L. E. Edsberg, J. M. Black, M. Goldberg, L. McNichol, L. Moore, M. Sieggreen, “Revised national pressure ulcer advisory panel pressure injury staging system: Revised pressure injury staging system,” J Wound Ostomy Continence Nurs. 43(6) (2016) 585–597. [2]C.- L. Chin, C.- Y. Li, Y.- M Lai, T. Chen, T.- Y. Sun, J.- C. Lin, CWD2GAN: Generative Adversarial Network of Chronic Wound Depth Detection for Predicting Chronic Wound Depth, International Journal of Pattern Recognition and Artificial Intelligence, vol. 37, no. 3, (2023). [3]J. S. Mervis and T. J. Phillips, Pressure ulcers: Prevention and management, J. Am. Acad. Dermatol. 81(4) (2019) 893–902. [4]C. C. V. Stülpnagel, N. D. Silva, M. Augustin, C. V. Montfrans, C. Fife, A.- M. Fagerdahl, A. Gamus, T. M. Klein, C. Blome and R. Sommer, Assessing the quality of life of people with chronic wounds by using the cross-culturally valid and revised Wound-QoL ques- tionnaire, Wound Repair Regen. 29(3) (2021) 452–459. [5]T. Biswas, M. F. Ahmad Fauzi, F. S. Abas, and H. K. R. Nair, Enhanced CNN Based Super pixel Classification for Automated Wound Area Segmentation, IEEE 8th R10 Humanitarian Technology Conference (2020) (R10-HTC). [6]C. Cui, K. Thurnhofer-Hemsi, R. Soroushmehr, A. Mishra, J. Gryak, E. Domínguez, K. Najarian, and E. López-Rubio, Diabetic Wound Segmentation using Convolutional Neural Networks, Annu Int Conf IEEE Eng Med Biol Soc. (2019) 1002–1005. [7]R. Zhang, D. Tian, D. Xu, W. Qian, and Y. Yao, A Survey of Wound Image Analysis Using Deep Learning: Classification, Detection, and Segmentation, IEEE Access, vol. 10, (2022) 79502-79515. [8]D. Marijanović and D. Filko, A systematic overview of recent methods for non-contact chronic wound analysis, Appl. Sci. 10(21) (2020) 7613. [9]D. Marijanović, E. K. Nyarko and D. Filko, Wound detection by simple feedforward neural network, Electronics. 11(3) (2022) 329. [10]J. S. Mervis and T. J. Phillips, Pressure ulcers: Prevention and management, J. Am. Acad. Dermatol. 81(4) (2019) 893–902. [11]J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You Only Look Once: Unified, Real-Time Object Detection, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2016) 779-788. [12]J. A.- Sánchez, G. V.- Molina, M. E. L.- Valverde and J. M. R.- Bonilla, Severe diabetic foot infections without systemic inflammatory response syndrome: Prospective validation of a new category, Wound Repair Regen. Acoust. Speech. Signal Process. 30 (5) (2022) 553-559. [13]J. E. Grey, S. Enoch, research fellow and K. G. Harding, Wound assessment, BMJ. 332(7536) (2006) 285–288. [14]T. I. Oliver and M. Mutluoglu, Diabetic Foot Ulcer, StatPearls Publishing. (2023). [15]S. Treneska, E. Zdravevski, I. M. Pires, P. Lameski and S. Gievska, GAN-Based Image Colorization for Self-Supervised Visual Feature Learning, Sensors (Basel). 22(4) (2022) 1599. [16]R. Shetty, H. Sreekar, S. Lamba and A. K. Gupta, A novel and accurate technique of photographic wound measurement, Indian J. Plast. Surg.45(2) (2012) 425–429. [17]L. Antony, A. S. Thelly, and J. M. Mathew, Evidence-based Clinical Practice Guidelines for Caregivers of Palliative Care Patients on the Prevention of Pressure Ulcer, Indian J Palliat Care. 29(1) (2023) 75–81.
|