|
[1] Lee, C., Wei, X., Kysar, J. W., & Hone, J. (2008). Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321(5887), 385-388. [2] Pop, E., Varshney, V., & Roy, A. K. (2012). Thermal properties of graphene: Fundamentals and applications. MRS Bulletin, 37(12), 1273-1281. [3] Chen, J. H., Jang, C., Xiao, S., Ishigami, M., & Fuhrer, M. S. (2008). Intrinsic and extrinsic performance limits of graphene devices on SiO 2. Nature Nanotechnology, 3(4), 206-209. [4] Martins, T. B., Miwa, R. D., Da Silva, A. J., & Fazzio, A. J. R. A. (2007). Electronic and transport properties of boron-doped graphene nanoribbons. Physical Review Letters, 98(19), 196803. [5] Lin, M. W., Ling, C., Zhang, Y., Yoon, H. J., Cheng, M. M. C., Agapito, L. A., ... & Zhou, Z. (2011). Room-temperature high on/off ratio in suspended graphene nanoribbon field-effect transistors. Nanotechnology, 22(26), 265201. [6] Han, M. Y., Özyilmaz, B., Zhang, Y., & Kim, P. (2007). Energy band-gap engineering of graphene nanoribbons. Physical Review Letters, 98(20), 206805. [7] Ni, Z. H., Yu, T., Lu, Y. H., Wang, Y. Y., Feng, Y. P., & Shen, Z. X. (2008). Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening. ACS Nano, 2(11), 2301-2305. [8] Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., ... & Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. Science, 306(5696), 666-669. [9] Vogt, P., De Padova, P., Quaresima, C., Avila, J., Frantzeskakis, E., Asensio, M. C., ... & Le Lay, G. (2012). Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. Physical Review Letters, 108(15), 155501. [10] Bianco, E., Butler, S., Jiang, S., Restrepo, O. D., Windl, W., & Goldberger, J. E. (2013). Stability and exfoliation of germanane: a germanium graphane analogue. ACS Nano, 7(5), 4414-4421. [11] Sadeghzadeh, S. (2018). Borophene sheets with in-plane chain-like boundaries; a reactive molecular dynamics study. Computational Materials Science, 143, 1-14. [12] Mortazavi, B., Pereira, L. F. C., Jiang, J. W., & Rabczuk, T. (2015). Modelling heat conduction in polycrystalline hexagonal boron-nitride films. Scientific Reports, 5(1), 1-11. [13] Fan, X., Khosravi, F., Rahneshin, V., Shanmugam, M., Loeian, M., Jasinski, J., ... & Panchapakesan, B. (2015). MoS2 actuators: reversible mechanical responses of MoS2-polymer nanocomposites to photons. Nanotechnology, 26(26), 261001. [14] Dadrasi, A., Albooyeh, A. R., & Mashhadzadeh, A. H. (2019). Mechanical properties of silicon-germanium nanotubes: A molecular dynamics study. Applied Surface Science, 498, 143867. [15] Fang, T. H., Shen, C. Y., Fan, Y. C., & Chang, W. J. (2019). Fracture characteristics of silicene nanosheet with a crack under tension estimated using molecular dynamics simulation. Superlattices and Microstructures, 129, 124-129. [16] Mannix, A. J., Kiraly, B., Hersam, M. C., & Guisinger, N. P. (2017). Synthesis and chemistry of elemental 2D materials. Nature Reviews Chemistry, 1(2), 1-14. [17] Brent, J. R., Savjani, N., & O'Brien, P. (2017). Synthetic approaches to two-dimensional transition metal dichalcogenide nanosheets. Progress in Materials Science, 89, 411-478. [18] Babu, G., Masurkar, N., Al Salem, H., & Arava, L. M. R. (2017). Transition metal dichalcogenide atomic layers for lithium polysulfides electrocatalysis. Journal of the American Chemical Society, 139(1), 171-178. [19] Chao, D., Zhu, C., Yang, P., Xia, X., Liu, J., Wang, J., ... & Shen, Z. X. (2016). Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance. Nature Communications, 7(1), 1-8. [20] Li, J., Lin, J., Xu, X., Zhang, X., Xue, Y., Mi, J., ... & Tang, C. (2013). Porous boron nitride with a high surface area: hydrogen storage and water treatment. Nanotechnology, 24(15), 155603. [21] Regli, S., Kelly, J. A., Barnes, M. A., Andrei, C. M., & Veinot, J. G. (2014). Mesoporous silica encapsulation of silicon nanocrystals: synthesis, aqueous dispersibility and drug release. Materials Letters, 115, 21-24. [22] Fan, Z., Zhao, Q., Li, T., Yan, J., Ren, Y., Feng, J., & Wei, T. (2012). Easy synthesis of porous graphene nanosheets and their use in supercapacitors. Carbon, 50(4), 1699-1703. [23] Lin, Y., Moitoso, B., Martinez-Martinez, C., Walsh, E. D., Lacey, S. D., Kim, J. W., ... & Connell, J. W. (2017). Ultrahigh-capacity lithium–oxygen batteries enabled by dry-pressed holey graphene air cathodes. Nano Letters, 17(5), 3252-3260. [24] Liu, Y., Pharr, M., & Salvatore, G. A. (2017). Lab-on-skin: a review of flexible and stretchable electronics for wearable health monitoring. ACS Nano, 11(10), 9614-9635. [25] Han, L., Wang, L., Song, J., Boyce, M. C., & Ortiz, C. (2011). Direct quantification of the mechanical anisotropy and fracture of an individual exoskeleton layer via uniaxial compression of micropillars. Nano Letters, 11(9), 3868-3874. [26] Hoa, M. L. K., Lu, M., & Zhang, Y. (2006). Preparation of porous materials with ordered hole structure. Advances in Colloid and Interface Science, 121(1-3), 9-23. [27] Zhao, J., Cheng, F., Yi, C., Liang, J., Tao, Z., & Chen, J. (2009). Facile synthesis of hierarchically porous carbons and their application as a catalyst support for methanol oxidation. Journal of Materials Chemistry, 19(24), 4108-4116. [28] Wang, X., & Tabarraei, A. (2016). Phonon thermal conductivity of monolayer MoS2. Applied Physics Letters, 108(19), 191905. [29] Wang, H., Liu, X., Niu, P., Wang, S., Shi, J., & Li, L. (2020). Porous two-dimensional materials for photocatalytic and electrocatalytic applications. Matter, 2(6), 1377-1413. [30] Jang, J. S., Jung, H. J., Chong, S., Kim, D. H., Kim, J., Kim, S. O., & Kim, I. D. (2020). 2D materials decorated with ultrathin and porous graphene oxide for high stability and selective surface activity. Advanced Materials, 32(36), 2002723. [31] Liu, T., Ding, J., Su, Z., & Wei, G. (2017). Porous two-dimensional materials for energy applications: Innovations and challenges. Materials Today Energy, 6, 79-95. [32] Sun, M. H., Huang, S. Z., Chen, L. H., Li, Y., Yang, X. Y., Yuan, Z. Y., & Su, B. L. (2016). Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine. Chemical Society Reviews, 45(12), 3479-3563. [33] Zhou, D., Cui, Y., Xiao, P. W., Jiang, M. Y., & Han, B. H. (2014). A general and scalable synthesis approach to porous graphene. Nature Communications, 5(1), 1-7. [34] Arabha, S., Akbarzadeh, A. H., & Rajabpour, A. (2020). Engineered porous borophene with tunable anisotropic properties. Composites Part B: Engineering, 200, 108260. [35] He, Y., Tsutsui, M., Ryuzaki, S., Yokota, K., Taniguchi, M., & Kawai, T. (2014). Graphene/hexagonal boron nitride/graphene nanopore for electrical detection of single molecules. NPG Asia Materials, 6(6), e104-e104. [36] Moreno, C., Vilas-Varela, M., Kretz, B., Garcia-Lekue, A., Costache, M. V., Paradinas, M., ... & Mugarza, A. (2018). Bottom-up synthesis of multifunctional nanoporous graphene. Science, 360(6385), 199-203. [37] Lin, J., Peng, Z., Liu, Y., Ruiz-Zepeda, F., Ye, R., Samuel, E. L., ... & Tour, J. M. (2014). Laser-induced porous graphene films from commercial polymers. Nature Communications, 5(1), 1-8. [38] Russo, C. J., & Golovchenko, J. A. (2012). Atom-by-atom nucleation and growth of graphene nanopores. Proceedings of the National Academy of Sciences, 109(16), 5953-5957. [39] Cahill, D. G., Ford, W. K., Goodson, K. E., Mahan, G. D., Majumdar, A., Maris, H. J., ... & Phillpot, S. R. (2003). Nanoscale thermal transport. Journal of Applied Physics, 93(2), 793-818. [40] Pham, V. T., & Fang, T. H. (2020). Effects of temperature and intrinsic structural defects on mechanical properties and thermal conductivities of InSe monolayers. Scientific Reports, 10(1), 1-15. [41] Li, J., Tian, C., Zhang, Y., Zhou, H., Hu, G., & Xia, R. (2020). Structure-property relation of nanoporous graphene membranes. Carbon, 162, 392-401. [42] Jiang, L., & Fan, Z. (2014). Design of advanced porous graphene materials: from graphene nanomesh to 3D architectures. Nanoscale, 6(4), 1922-1945. [43] Ahmad, W., Ullah, Z., Sonil, N. I., & Khan, K. (2021). Introduction, production, characterization and applications of defects in graphene. Journal of Materials Science: Materials in Electronics, 32(15), 19991-20030. [44] Mannix, A. J., Zhou, X. F., Kiraly, B., Wood, J. D., Alducin, D., Myers, B. D., ... & Yacaman, M. J. (2015). Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs. Science, 350(6267), 1513-1516. [45] Sun, H., Li, Q., & Wan, X. G. (2016). First-principles study of thermal properties of borophene. Physical Chemistry Chemical Physics, 18(22), 14927-14932. [46] Wang, Z. Q., Lü, T. Y., Wang, H. Q., Feng, Y. P., & Zheng, J. C. (2019). Review of borophene and its potential applications. Frontiers of Physics, 14(3), 33403. [47] Peng, B., Zhang, H., Shao, H., Xu, Y., Zhang, R., & Zhu, H. (2016). The electronic, optical, and thermodynamic properties of borophene from first-principles calculations. Journal of Materials Chemistry C, 4(16), 3592-3598. [48] Lherbier, A., Botello-Méndez, A. R., & Charlier, J. C. (2016). Electronic and optical properties of pristine and oxidized borophene. 2D Materials, 3(4), 045006. [49] Zhong, H., Huang, K., Yu, G., & Yuan, S. (2018). Electronic and mechanical properties of few-layer borophene. Physical Review B, 98(5), 054104. [50] Liao, J. H., Zhao, Y. C., Zhao, Y. J., Xu, H., & Yang, X. B. (2017). Phonon-mediated superconductivity in Mg intercalated bilayer borophenes. Physical Chemistry Chemical Physics, 19(43), 29237-29243. [51] Magu, T. O., Louis, H., Opeyemi, O. M., & Oyebanji, O. F. (2019). Porphyrin and Phthalocyanines-Based Solar Cells: Fundamental Mechanisms and Recent Advances. Advanced Journal of Chemistry-Section A, 2(1, pp. 1-93.), 21-44. [52] Lopez-Bezanilla, A., & Littlewood, P. B. (2016). Electronic properties of 8− Pmmn borophene. Physical Review B, 93(24), 241405. [53] Jiang, H. R., Shyy, W., Liu, M., Ren, Y. X., & Zhao, T. S. (2018). Borophene and defective borophene as potential anchoring materials for lithium–sulfur batteries: a first-principles study. Journal of Materials Chemistry A, 6(5), 2107-2114. [54] Kootenaei, A. S., & Ansari, G. (2016). B36 borophene as an electronic sensor for formaldehyde: quantum chemical analysis. Physics Letters A, 380(34), 2664-2668. [55] Fang, T. H., & Doan, D. Q. (2022). Structure-mechanical property relations of nanoporous two-dimensional gallium selenide. Computational Materials Science, 202, 110985. [56] Noroozi, A., Malih, N., & Davoodi, J. The thermal transport characterization of borophene: A molecular dynamics study. Comput. Mater. Sci. 190, 110302 (2021). [57] Abadi, R., Jenabidehkordi, A., & Rabczuk, T. Investigation into the fracture mechanism and thermal conductivity of borophene nanofilm; a reactive molecular dynamics simulation. Comput. Mater. Sci. 178, 109625 (2020). [58] Liang, T., Zhang, P., Yuan, P., Zhai, S., & Yang, D. A molecular dynamics study on the thermal conductivities of single-and multi-layer two-dimensional borophene. Nano Futures 3, 015001 (2019). [59] Mortazavi, B. et al. Machine-learning interatomic potentials enable first-principles multiscale modeling of lattice thermal conductivity in graphene/borophene heterostructures. Mater. Horiz. 7, 2359-2367 (2020). [60] Yang, Z., Bhowmick, S., Sen, F. G., & Alpas, A. T. (2021). Microscopic and atomistic mechanisms of sliding friction of MoS2: Effects of undissociated and dissociated H2O. Applied Surface Science, 150270. [61] Ataca, C., Sahin, H., Akturk, E., & Ciraci, S. (2011). Mechanical and electronic properties of MoS2 nanoribbons and their defects. The Journal of Physical Chemistry C, 115(10), 3934-3941. [62] Lee, H. S., Min, S. W., Chang, Y. G., Park, M. K., Nam, T., Kim, H., ... & Im, S. (2012). MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Letters, 12(7), 3695-3700. [63] Bodik, M., Sojkova, M., Hulman, M., Tapajna, M., Truchly, M., Vegso, K., ... & Siffalovic, P. (2021). Friction control by engineering the crystallographic orientation of the lubricating few-layer MoS2 films. Applied Surface Science, 540, 148328. [64] Acerce, M., Voiry, D., & Chhowalla, M. (2015). Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nature Nanotechnology, 10(4), 313-318. [65] Toh, R. J., Sofer, Z., Luxa, J., Sedmidubský, D., & Pumera, M. (2017). 3R phase of MoS2 and WS2 outperforms the corresponding 2H phase for hydrogen evolution. Chemical Communications, 53(21), 3054-3057. [66] Ding, Q., Song, B., Xu, P., & Jin, S. (2016). Efficient electrocatalytic and photoelectrochemical hydrogen generation using MoS2 and related compounds. Chem, 1(5), 699-726. [67] Imani Yengejeh, S., Liu, J., Kazemi, S. A., Wen, W., & Wang, Y. (2020). Effect of structural phases on mechanical properties of molybdenum disulfide. ACS Omega, 5(11), 5994-6002. [68] Yi, C., Hu, C., Bai, M., Lv, J., & Tang, D. (2020). Molecular dynamics study on the mechanical properties of multilayer MoS2 under different potentials. Nanotechnology, 31(21), 215703. [69] Aiyiti, A., Hu, S., Wang, C., Xi, Q., Cheng, Z., Xia, M., ... & Li, B. (2018). Thermal conductivity of suspended few-layer MoS2. Nanoscale, 10(6), 2727-2734. [70] Li, H., Wu, J., Yin, Z., & Zhang, H. (2014). Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets. Accounts of Chemical Research, 47(4), 1067-1075. [71] Li, Y., Chen, P., Zhang, C., Peng, J., Gao, F., & Liu, H. (2019). Molecular dynamics simulation on the buckling of single-layer MoS2 sheet with defects under uniaxial compression. Computational Materials Science, 162, 116-123. [72] Bao, H., Huang, Y., Yang, Z., Sun, Y., Bai, Y., Miao, Y., ... & Ma, F. (2018). Molecular dynamics simulation of nanocrack propagation in single-layer MoS2 nanosheets. The Journal of Physical Chemistry C, 122(2), 1351-1360. [73] Islam, Z., & Haque, A. (2021). Defects and grain boundary effects in MoS2: A molecular dynamics study. Journal of Physics and Chemistry of Solids, 148, 109669. [74] Mahata, A., Jiang, J. W., Mahapatra, D. R., & Rabczuk, T. (2019). Effect of intrinsic structural defects on mechanical properties of single layer MoS2. Nano-Structures & Nano-Objects, 18, 100247. [75] Li, X., Zhang, J., Puretzky, A. A., Yoshimura, A., Sang, X., Cui, Q., ... & Xiao, K. (2019). Isotope-engineering the thermal conductivity of two-dimensional MoS2. ACS Nano, 13(2), 2481-2489. [76] Yan, R., Simpson, J. R., Bertolazzi, S., Brivio, J., Watson, M., Wu, X., ... & Xing, H. G. (2014). Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy. ACS Nano, 8(1), 986-993. [77] Jiang, P., Qian, X., Gu, X., & Yang, R. (2017). Probing anisotropic thermal conductivity of transition metal dichalcogenides MX2 (M= Mo, W and X= S, Se) using time‐domain thermoreflectance. Advanced Materials, 29(36), 1701068. [78] Zhang, X., Sun, D., Li, Y., Lee, G. H., Cui, X., Chenet, D., ... & Hone, J. C. (2015). Measurement of lateral and interfacial thermal conductivity of single-and bilayer MoS2 and MoSe2 using refined optothermal Raman technique. ACS Applied Materials & Interfaces, 7(46), 25923-25929. [79] Xiang, J., Ali, R. N., Yang, Y., Zheng, Z., Xiang, B., & Cui, X. (2019). Monolayer MoS2 thermoelectric properties engineering via strain effect. Physica E: Low-dimensional Systems and Nanostructures, 109, 248-252. [80] Gu, X., Li, B., & Yang, R. (2016). Layer thickness-dependent phonon properties and thermal conductivity of MoS2. Journal of Applied Physics, 119(8), 085106. [81] Liu, X., Zhang, G., Pei, Q. X., & Zhang, Y. W. (2013). Phonon thermal conductivity of monolayer MoS2 sheet and nanoribbons. Applied Physics Letters, 103(13), 133113. [82] Cai, Y., Lan, J., Zhang, G., & Zhang, Y. W. (2014). Lattice vibrational modes and phonon thermal conductivity of monolayer MoS2. Physical Review B, 89(3), 035438. [83] Hong, Y., Zhang, J., & Zeng, X. C. (2016). Thermal conductivity of monolayer MoSe2 and MoS2. The Journal of Physical Chemistry C, 120(45), 26067-26075. [84] Bandurin, D. A., Tyurnina, A. V., Geliang, L. Y., Mishchenko, A., Zólyomi, V., Morozov, S. V., ... & Kovalyuk, Z. D. (2017). High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe. Nature Nanotechnology, 12(3), 223. [85] Mudd, G. W., Svatek, S. A., Hague, L., Makarovsky, O., Kudrynskyi, Z. R., Mellor, C. J., ... & Vdovin, E. E. (2015). High broad‐band photoresponsivity of mechanically formed InSe–graphene van der Waals heterostructures. Advanced Materials, 27(25), 3760-3766. [86] Zhou, J., Shi, J., Zeng, Q., Chen, Y., Niu, L., Liu, F., ... & Liu, Z. (2018). InSe monolayer: synthesis, structure and ultra-high second-harmonic generation. 2D Materials, 5(2), 025019. [87] Chang, H. C., Tu, C. L., Lin, K. I., Pu, J., Takenobu, T., Hsiao, C. N., & Chen, C. H. (2018). Synthesis of Large Area InSe Monolayers by Chemical Vapor Deposition. Small, 14(39), 1802351. [88] Hung, N. T., Nugraha, A. R., & Saito, R. (2017). Two-dimensional InSe as a potential thermoelectric material. Applied Physics Letters, 111(9), 092107. [89] Jalilian, J., & Safari, M. (2017). Electronic and optical properties of α-InX (X= S, Se and Te) monolayer: Under strain conditions. Physics Letters A, 381(15), 1313-1320. [90] Tamalampudi, S. R., Lu, Y. Y., Kumar U, R., Sankar, R., Liao, C. D., Moorthy B, K., ... & Chen, Y. T. (2014). High performance and bendable few-layered InSe photodetectors with broad spectral response. Nano Letters, 14(5), 2800-2806. [91] Balakrishnan, N., Kudrynskyi, Z. R., Fay, M. W., Mudd, G. W., Svatek, S. A., Makarovsky, O., ... & Patanè, A. (2014). Room temperature electroluminescence from mechanically formed van der Waals III–VI homojunctions and heterojunctions. Advanced Optical Materials, 2(11), 1064-1069. [92] Lei, S., Ge, L., Najmaei, S., George, A., Kappera, R., Lou, J., ... & Mohite, A. D. (2014). Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe. ACS Nano, 8(2), 1263-1272. [93] Iordanidou, K., Houssa, M., Kioseoglou, J., Afanas’ ev, V. V., Stesmans, A., & Persson, C. (2018). Hole-doped 2D InSe for spintronic applications. ACS Applied Nano Materials, 1(12), 6656-6665. [94] Zhou, S., Liu, C. C., Zhao, J., & Yao, Y. (2018). Monolayer group-III monochalcogenides by oxygen functionalization: a promising class of two-dimensional topological insulators. npj Quantum Materials, 3(1), 1-7. [95] Chang, X., Li, H., & Tang, G. (2019). Tensile mechanical properties and fracture behavior of monolayer InSe under axial tension. Computational Materials Science, 158, 340-345. [96] Jiang, J. W., Rabczuk, T., & Park, H. S. (2015). A Stillinger–Weber potential for single-layered black phosphorus, and the importance of cross-pucker interactions for a negative Poisson's ratio and edge stress-induced bending. Nanoscale, 7(14), 6059-6068. [97] J.-W. Jiang, Y.-P. Zhou, Parameterization of Stillinger-Weber Potential for Two- Dimensional Atomic Crystals, Handbook of Stillinger-Weber Potential Parameters for Two-Dimensional Atomic Crystals, IntechOpen, 2017. [98] Sha, Z. D., Pei, Q. X., Zhou, K., Dong, Z., Zhang, Y. W. (2018). Temperature and strain-rate dependent mechanical properties of single-layer borophene. Extreme Mechanics Letters, 19, 39-45. [99] Jia, Y., Li, C., Jiang, J. W., Wei, N., Chen, Y., & Zhang, Y. J. (2017). Molecular Dynamics Simulations for Anisotropic Thermal Conductivity of Borophene. arXiv preprint arXiv:1705.11016. [100] Jiang, J. W. (2015). Parametrization of Stillinger–Weber potential based on valence force field model: application to single-layer MoS2 and black phosphorus. Nanotechnology, 26(31), 315706. [101] Bao, H., Huang, Y., Yang, Z., Miao, Y., Chu, P. K., Xu, K., & Ma, F. (2017). Tensile loading induced phase transition and rippling in single-layer MoS2. Applied Surface Science, 404, 180-187. [102] Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1-19 (1995). [103] Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 18, 015012 (2009). [104] Zhou, Y. P., & Jiang, J. W. Molecular dynamics simulations for mechanical properties of borophene: parameterization of valence force field model and Stillinger-Weber potential. Sci. Rep. 7, 1-12 (2017). [105] Mannix, A. J., Zhang, Z., Guisinger, N. P., Yakobson, B. I., & Hersam, M. C. Borophene as a prototype for synthetic 2D materials development. Nat. Nanotechnol. 13, 444-450 (2018). [106] Schelling, P. K., Phillpot, S. R., & Keblinski, P. Comparison of atomic-level simulation methods for computing thermal conductivity. Phys. Rev. B 65, 144306 (2002). [107] Ghosh, D. S. et al. Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits. Appl. Phys. Lett. 92, 151911 (2008). [108] Zhang, Y. Y., Cheng, Y., Pei, Q. X., Wang, C. M., & Xiang, Y. Thermal conductivity of defective graphene. Phys. Lett. A 376, 3668-3672 (2012). [109] Ma, J. J., Zheng, J. J., Li, W. D., Wang, D. H., & Wang, B. T. Thermal transport properties of monolayer MoSe2 with defects. Phys. Chem. Chem. Phys. 22, 5832-5838 (2020). [110] Park, J., Farfán, E. B., & Enriquez, C. Thermal transport in thorium dioxide. Nucl. Eng. Technol. 50, 731-737 (2018). [111] Islam, A. J. et al. Anomalous temperature dependent thermal conductivity of two-dimensional silicon carbide. Nanotechnology 30, 445707 (2019). [112] Jiang, J. W. & Zhou, Y. P. Parameterization of Stillinger–Weber Potential for Two-Dimensional Atomic Crystal (IntechOpen, London, 2017). https://doi.org/10.5772/intechopen.71929 [113] Wang, H. et al. Strain effects on borophene: ideal strength, negative Possion's ratio and phonon instability. New J. Phys. 18, 073016 (2016). [114] Sun, X., Fu, Z., Xia, M., & Xu, Y. (2014). Effects of vacancy defect on the tensile behavior of graphene. Theoretical and Applied Mechanics Letters, 4(5), 051002. [115] Han, T., Jiang, T., Wang, X., Li, P., Qiao, L., & Zhang, X. (2019). Tuning the mechanical properties of nanoporous graphene: a molecular dynamics study. Materials Research Express, 6(9), 095619. [116] Subad, R. A., Akash, T. S., Bose, P., & Islam, M. M. (2020). Engineered defects to modulate fracture strength of single layer MoS2: An atomistic study. Physica B: Condensed Matter, 592, 412219. [117] Krishnamoorthy, A., Rajak, P., Norouzzadeh, P., Singh, D. J., Kalia, R. K., Nakano, A., & Vashishta, P. (2019). Thermal conductivity of MoS2 monolayers from molecular dynamics simulations. AIP Advances, 9(3), 035042. [118] Li, X., Zhang, J., Puretzky, A. A., Yoshimura, A., Sang, X., Cui, Q., ... & Xiao, K. (2019). Isotope-engineering the thermal conductivity of two-dimensional MoS2. ACS nano, 13(2), 2481-2489. [119] Klemens, P. G. (2001). Theory of thermal conduction in thin ceramic films. International Journal of Thermophysics, 22(1), 265-275. [120] Chen, D., Chen, H., Hu, S., Guo, H., Sharshir, S. W., An, M., ... & Zhang, X. (2020). Influence of atomic-scale defect on thermal conductivity of single-layer MoS2 sheet. Journal of Alloys and Compounds, 831, 154875. [121] Islam, A. J., Islam, M. S., Ferdous, N., Park, J., & Hashimoto, A. Vacancy-induced thermal transport in two-dimensional silicon carbide: a reverse non-equilibrium molecular dynamics study. Phys. Chem. Chem. Phys. 22, 13592-13602 (2020). [122] Zhao, M., Pan, W., Wan, C., Qu, Z., Li, Z., & Yang, J. (2017). Defect engineering in development of low thermal conductivity materials: a review. Journal of the European Ceramic Society, 37(1), 1-13. [123] Wang, X., Tabarraei, A., & Spearot, D. E. (2015). Fracture mechanics of monolayer molybdenum disulfide. Nanotechnology, 26(17), 175703. [124] Hu, T., Zhou, J., & Dong, J. (2017). Strain induced new phase and indirect–direct band gap transition of monolayer InSe. Physical Chemistry Chemical Physics, 19(32), 21722-21728. [125] Nissimagoudar, A. S., Ma, J., Chen, Y., & Li, W. (2017). Thermal transport in monolayer InSe. Journal of Physics: Condensed Matter, 29(33), 335702. [126] Shafique, A., & Shin, Y. H. (2020). The effect of non-analytical corrections on the phononic thermal transport in InX (X= S, Se, Te) monolayers. Scientific Reports, 10(1), 1-10. [127] Liu, F., Ming, P., & Li, J. (2007). Ab initio calculation of ideal strength and phonon instability of graphene under tension. Physical Review B, 76(6), 064120. [128] Hu, T., & Dong, J. (2015). Structural phase transitions of phosphorene induced by applied strains. Physical Review B, 92(6), 064114. [129] Wang, Z., Lü, T. Y., Wang, H. Q., Feng, Y. P., & Zheng, J. C. (2016). High anisotropy of fully hydrogenated borophene. Physical Chemistry Chemical Physics, 18(46), 31424-31430.
|