|
[1] J. Kwon, M. J. Im, C. U. Kim, S. H. Won, S. B. Kang, S. H. Kang, I. T. Choi, H. K. Kim, I. H. Kim, J. H. Park, and K. J. Choi, “Two-terminal DSSC/silicon tandem solar cells exceeding 18 % efficiency,” Energy & Environmental Science, vol. 9, 2016, pp. 3657-3665. [2] H. B. Michaelson, “The work function of the elements and its periodicity,” Journal of Applied Physics, vol. 48, 1977, pp. 4729-4733. [3] G. G. Pethuraja, R. E. Welser, A. K. Sood, C. Lee, N. J. Alexander, H. Efstathiadis, P. Haldar, and J. L. Harvey, “Current-voltage characteristics of ITO/p-Si and ITO/n-Si contact interfaces,” Advances in Materials Physics and Chemistry, vol. 2, 2012, pp. 59-62. [4] O. Malik, F. J. D. L Hidalga-W, C. Zúñiga-I, and G. Ruiz-T, “Efficient ITO–Si solar cells and power modules fabricated with a low temperature technology: Results and perspectives,” Journal of Non-Crystalline Solids, vol. 354, 2008, pp. 2472-2477. [5] T. Mizrah, and D. Adler, “Operation of ITO/Si heterojunction solar cells,” Applied Physics Letters, vol.29, 1976, pp. 682-684. [6] K. Yoo, and J. H. Lee, “Effect of low temperature annealing on ITO-on-Si Schottky junction,” IEEE Electron Device Letters, vol. 38, 2017, pp. 426-429. [7] Z. Huang, Y. Mao, G. Lin, X. Yi, A. Chang, C. Li, S. Chen, W. Huang, and J. Wang, “Low dark current broadband 360-1650 nm ITO/Ag/n-Si Schottky photodetectors,” Optics Express, vol. 26, 2018, pp. 5827-5834. [8] J. Lee, Y. J. Lee, M. Ju, K. Ryu, B. Kim, and J. Yi, “A novel method for crystalline silicon solar cells with low contact resistance and antireflection coating by an oxidized Mg layer,” Nanoscale Research Letters, vol. 7, 2012, pp. 1-5. [9] T. G. Allen, J. Bullock, P. Zheng, B. Vaughan, M. Barr, Y. Wan, C. Samundsett, D. Walter, A. Javey, and A. Cuevas, “Calcium contacts to n‐type crystalline silicon solar cells,” Progress in Photovoltaics: Research and Applications, vol. 25, 2017, pp. 636-644. [10] D. Tantraviwat, W. Yamwong, U. Techakijkajorn, K. Imai, and B. Inceesungvorn, “Schottky barrier height engineering of Ti/n-Type silicon diode by means of ion implantation,” Walailak Journal of Science and Technology, vol. 15, 2018, pp. 803-809. [11] B. Ghosh, “Electrical contacts for II–VI semiconducting devices,” Microelectronic Engineering, vol. 86, 2009, pp. 2187-2206. [12] P. N. Vinod, “Specific contact resistance measurements of the screen-printed Ag thick film contacts in the silicon solar cells by three-point probe methodology and TLM method,” Journal of Materials Science: Materials in Electronics, vol. 22, 2011, pp. 1248-1257. [13] M. M. Staszuk, “Comparison of the values of solar cell contact resistivity measured with the transmission line method (TLM) and the potential difference (PD),” Materials, vol. 14, 2021, pp. 1-12. [14] P. N. Vinod, “Specific contact resistance of the porous silicon and silver metal ohmic contact structure,” Semiconductor science and technology, vol. 20, 2005, pp. 966-971. [15] Y. C. Lin, S. J. Chang, Y. K. Su, T. Y. Tsai, C. S. Chang, S. C. Shei, S. J. Hsu, C. H. Liu, U. H. Liaw, S. C. Chen, and B. R. Huang, “Nitride-based light-emitting diodes with Ni/ITO p-type ohmic contacts,” IEEE Photonics Technology Letters, vol. 14, 2002, pp. 1668-1670. [16] P. Muralidharan, M. Leilaeioun, W. Weigand, Z. C. Holman, S. M. Goodnick, and D. Vasileska, “Understanding transport in hole contacts of silicon heterojunction solar cells by simulating TLM structures,” IEEE Journal of Photovoltaics, vol. 10, 2019, pp. 363-371. [17] M. Gheidari, and E. A. Soleimani, “A study of Al/Ti, Al/Ni/Cr AND Al/Mo OHMIC contacts to indium tin oxide (ITO) for application in thin film Solar Cell,” Proceedings of ISES World Congress, vol. 2007, 2008, pp. 1123-1125. [18] D. W. Kima, Y. J. Sunga, J. W. Parkb, and G. Y. Yeom, “A study of transparent indium tin oxide (ITO) contact to p-GaN,” Thin Solid Films, vol. 398, 2001, pp.87-92. [19] J. S. Song, J. Y. Yang, J. S. Lee, J. P. Hong, and J. H. Ha, “Investigation of transparent conducting oxide/Si junction for the emitter wrap through solar cells,” 2010 35th IEEE Photovoltaic Specialists Conference, 2010, pp. 3611-3613. [20] E. Akbarnejad, E. A. Soleimani, and Z. Ghorannevis, “Improved electrical properties of Cr/ITO ohmic contact using RF sputtering system,” Molecular Crystals and Liquid Crystals, vol. 607, 2015, pp. 60-69. [21] S. Albrecht, M. Saliba, J. P. C. Baena, F. Lang, L. Kegelmann, M. Mews, L. Steier, A. Abate, J. Rappich, L. Korte, R. Schlatmann, M. K. Nazeeruddin, A. Hagfeldt, M. Grätzel, and B. Rech, “Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature,” Energy & Environmental Science, vol.9, 2016, pp. 81-88. [22] Y. Wu, D. Yan, J. Peng, T. Duong, Y. Wan, S. P. Phang, H. Shen, N. Wu, C. Barugkin, X. Fu, S. Surve, D. Grant, D. Walter, T. P. White, K. R. Catchpole, and K. J. Weber, “Monolithic perovskite/silicon-homojunction tandem solar cell with over 22% efficiency,” Energy & Environmental Science, vol. 10, 2017, pp. 2472-2479. [23] E. Fortunato, P. Barquinha, A. Pimentel, L. Pereira, G. Gonçalves, and R. Martins, “Amorphous IZO TTFTs with saturation mobilities exceeding 100 cm2/Vs,” Physica Status Solidi (RRL) – Rapid Research Letters, vol. 1, 2007, pp. 34-36. [24] K. Kawano, N. Ito, T. Nishimori, and J. Sakai, “Open circuit voltage of stacked bulk heterojunction organic solar cells,” Applied Physics Letters, vol. 88, 2006, pp. 1-4. [25] S. Zhu, X. Yao, Q. Ren, C. Zheng, S. Li, Y. Tong, B. Shi, S. Guo, L. Fan, H. Ren, C. Wei, B. Li, Y. Ding, Q. Huang, Y. Li, Y. Zhao, and X. Zhang, “Transparent electrode for monolithic perovskite/silicon-heterojunction two-terminal tandem solar cells,” Nano Energy, vol. 45, pp. 280-286. [26] H. Kanda, N. Shibayama, A. Uzum, T. Umeyama, H. Imahori, K. Ibi, and S. Ito, “Effect of silicon surface for perovskite/silicon tandem solar cells: flat or textured,” ACS Applied Materials & Interfaces, vol. 10, 2018, pp.35016-35024. [27] J. Xu, C. C. Boyd, Z. J. Yu, A. F. Palmstrom, D. J. Witter, B. W. Larson, R. M. France, J. Werner, S. P. Harvey, E. J. Wolf, W. Weigand, S. Manzoor, M. F. A. M. V. Hest, J. J. Berry, J. M. Luther, Z. C. Holman, and M. D. McGehee, “Triple-halide wide–band gap perovskites with suppressed phase segregation for efficient tandems,” Science, vol. 367, 2020, pp. 1097-1104. [28] I. J. Park, J. H. Park, S. G. Ji, M. A Park, J. H. Jang, and J. Y. Kim, “A three-terminal monolithic perovskite/Si tandem solar cell characterization platform,” Joule, vol. 3, 2019, pp. 807-818. [29] J. Bullock, M. Hettick, J. Geissbühler, A. J. Ong, T. Allen, C. M. S. Fella, T. Chen, H. Ota, E. Schaler, S. DeWolf, C. Ballif, A. Cuevas and A. Javey, “Efficient silicon solar cells with dopant-free asymmetric heterocontacts,” Nature Energy, vol. 1, 2016, pp.1-7. [30] L. Fang, S. J. Baik, S. Lim, S. Yoo, and K. S. Lim, “Amorphous Si rear Schottky junction solar cell with a LiF/Al back electrode,” IEEE Transactions on Electron Devices, vol. 58, 2011, pp. 3048-3052. [31] F. H. Hsu, N. F. Wang, Y. Z. Tsai, C. Y. Wu, Y, S. Cheng, M. H. Chien, and M. P. Houng, “Enhanced carrier collection in p-Ni1− xO: Li/n-Si heterojunction solar cells using LiF/Al electrodes,” Thin Solid Films, vol. 573, 2014, pp. 159-163. [32] H. D. Um, N. Kim, K. Lee, I. Hwang, J. H. Seo, and K. Seo, “Dopant-free all-back-contact Si nanohole solar cells using MoOx and LiF films,” Nano Letters, vol. 16, 2016, pp. 981-987. [33] D. Han, K. Jeong, H. S. Nam, K. Lee, J. Lee, C. O. Jeong, Y. Bae, “Direct contact of indium tin oxide layer to Al (Ni) alloy electrodes for a-Si: H thin film transistors: effects of Ni alloying on interfacial oxide growth and contact resistance,” Thin Solid Films, vol. 546, 2013, pp. 9-13.
|