|
[1]E. Kabira, P. Kumarb, S. Kumarc, A. A. Adelodund, K. H. Kime, Solar energy: Potential and future prospects, Renewable and Sustainable Energy Reviews 82 (2018) 894–900 [2]A. Dan, H. C. Barshilia, K. Chattopadhyay, B. Basu, Solar energy absorption mediated by surface plasma polaritons in spectrally selective dielectric-metal-dielectric coatings: A critical review, Renewable and Sustainable Energy Reviews 79 (2017) 1050-1077 [3]S. Izquierdo, C. Montanes, C. Dopazo, N. Fueyo, Analysis of CSP plants for the definition of energy policies: The influence on electricity cost of solar multiples, capacity factors and energy storage, Energy Policy 38 (2010) 6215-6221 [4]H. Allouhi, A. Allouhi, M.S. Buker, S. Zafar, A.Jamil, Recent advances, challenges, and prospects in solar dish collectors: Design, applications, and optimization frameworks, Solar Energy Materials and Solar Cells 241 (2022) 111743 [5]N. Selvakumar, H. C. Barshilia, Review of physical vapor deposited (PVD) spectrally selective coatings for mid- and high-temperature solar thermal applications, Solar Energy Materials and Solar Cells 98 (2012) 1-23 [6]K. Xu, M. Du, L. Hao, J. Mi, Q. Yu, S. Li, A review of high-temperature selective absorbing coatings for solar thermal applications, Journal of Materiomics 6 (2020) 167-182 [7]M. Du, L. Hao, J. Mi, F. Lv, X. Liu, L. Jiang, S. Wang, Optimization design of Ti0.5Al0.5N/Ti0.25Al0.25N/AlN coating used for solar selective applications, Solar Energy Materials and Solar Cells 95 (2011) 1193-1196 [8]J. A. Duffie, W. A. Beckman, Solar Engineering of Thermal Processes, John Wiley&Sons Fourth Edition (2013) 173-201. [9]C. Nunes, V. Teixeira, M. L. Prates, N. P. Barradas, A. D. Sequeira, Graded selective coatings based on chromium and titanium oxynitride, Thin Solid Films 442 (2003) 173–178 [10]M. Farooq, Z. H. Lee, Computations of the optical properties of metal/insulator-composites for solar selective absorbers, Renewable Energy 28 (2003) 1421-1431 [11]A. A. Shah, C. Ungaro, M. C. Gupta, High temperature spectral selective coatings for solar thermal systems by laser sintering, Solar Energy Materials & Solar Cells 135 (2015) 209-214 [12]Q. Wei, X. M. Pan, J. X. Zhou, C. Chen, High temperature spectral selective TiC-Ni/Mo cermet-based coatings for solar thermal systems by laser cladding, Solar Energy, 171 (2018)247-2571 [13]W. Wang, X. Huan, Y. Li, Spectral response and structural analyses of reactively sputtered molybdenum oxides for selective solar absorption, Ceramics International 47 (2021) 18893-18897 [14]L. Rebouta, A. Sousa, P. Capela, M. Andritschky, P. Santilli, A. Matilainen, K. Pischow, N. P. Barradas, E. Alves, Solar selective absorbers based on Al2O3:W cermets and AlSiN/AlSiON layers, Solar Energy Materials and Solar Cells 137 (2015) 93-100 [15]C.Zou, L. Huang, J. Wang, S. Xue, Effects of antireflection layers on the optical and thermal stability properties of a spectrally selective CrAlN–CrAlON based tandem absorber, Solar Energy Materials and Solar Cells 137 (2015) 243-252 [16]N. Selvakumar, S. Santhoshkumar, S. Basu, A. Biswas, H. C. Barshilia, Spectrally selective CrMoN/CrON tandem absorber for mid-temperature solar thermal applications, Solar Energy Materials and Solar Cells 109 (2013) 97-103 [17]H. D. Liu, Q. Wan, Y. R. Xu, C. luo, Y. M. Chen, D. J. Fu, F. Ren, G. Luo, X. D. Cheng, X. J. Hu, B. Yang, Long-term thermal stability of CrAlO-based solar selective absorbing coating in elevated temperature air, Solar Energy Materials & Solar Cells 134 (2015) 261-267 [18]H. D. Liu, T. R. Fu, M. H. Duan, Q. Wan, C. luo, Y. M. Chen, D. J. Fu, F. Ren, Q. Y. Li, X. D. Cheng, B. Yang, X.J. Hu, Structure and thermal stability of spectrally selective absorber based on AlCrON coating for solar-thermal conversion applications, Solar Energy Materials & Solar Cells 157 (2016) 108-116 [19]S. R. Atchuta, S. Sakthivel, H. C. Barshilia, Nickel doped cobaltite spinel as a solar selective absorber coating for efficient photothermal conversion with a low thermal radiative loss at high operating temperatures, Solar Energy Materials and Solar Cells 200 (2019) 109917 [20]A. B. Khelifa, S. Khamlich, Z. Y. Nuru, L. Kotsedi, A. Mebrahtu, M. Balgouthi, A. A. Guizani, W. Dimassi, M. Maaza, Growth and characterization of spectrally selective Cr2O3/Cr/Cr2O3 multilayered solar absorber by e-beam evaporation, Journal of Alloys and Compounds 734 (2018) 204-209 [21]L. A. Weinstein, J. Loomis, B. Bhatia, D. M. Bierman, E. N. Wang, G. Chen, Concentrating Solar Power, Chem. Rev. (2015) 12797-12838 [22]M. Koltun, G. Gukhman, A. Gavrilina, Stable selective coating black nickel for solar collector surfaces, Solar Energy Materials and Solar Cells 33 (1994) 41-44 [23]A. Antonaia, A. Castaldo, M. L. Addonizio, S. Esposito, Stability of W-Al2O3 cermet based solar coating for receiver tube operating at high temperature, Solar Energy Materials & Solar Cells 94 (2010)1604-1611 [24]F. Cao, K. McEnaaey, G. Chen, Z. Ren, A review of cermet-based spectrally selective solar absorbers, Energy & Environmental Science (2014) [25]Q. C. Zhang, Y. G. Shen, High performance W-AlN cermet solar coatings designed by modelling calculations and deposited by DC magnetron sputtering, Solar Energy Materials & Solar Cells 81 (2004) 25-37 [26]L. Zheng, F. Gao, S. Zhao, F. Zhouc, J. P. Nshimiyimana, X. Diao, Optical design and co-sputtering preparation of high performance Mo-SiO2 cermet solar selective absorbing coating, Applied Surface Science 280 (2013) 240-246 [27]L. Rebouta, A. Sousa, P. Capela, M. Andritschky, P. Santilli, A. Matilainen, K. Pischow, N. P. Barradas, E. Alves, Solar selective absorbers based on Al2O3:W cermets and AlSiN/AlSiON layers, Solar Energy Materials & Solar Cells 137 (2015) 93-100 [28]H. N. Ashtian, F. Jing, D. G. McCulloch, B. Akhavan, ITO-free silver-doped DMD structures: HiPIMS transparent-conductive nano-composite coatings for electrochromic applications, Solar Energy Materials & Solar Cells 231 (2021) 111268 [29]Z. Y. Nuru, C. J. Arendse, S. Khamlich, M. Maaza, Optimization of AlxOy/Pt/AlxOy multilayer spectrally selective coatings for solar-thermal applications, Vacuum 86 (2012) 2129-2135 [30]Y. Xue, C. Wang, W. Wang, Y. Liu, Y. Wu, Y. Ning, Y. Sun, Spectral properties and thermal stability of solar selective absorbing AlNi–Al2O3 cermet coating, Solar Energy 96 (2013) 113-118 [31]X. H. Gao, C. B. Wang, Z. M. Guo, Q. F. Geng, W. Theiss, G. Liu, Structure, optical properties and thermal stability of Al2O3-WC nanocomposite ceramic spectrally selective solar absorbers, Optical Materials 58 (2016) 219-225 [32]F. Cao, L. Tang, Y. Li, A. P. Litvinchuk, J. Bao, Z. Ren, A high-temperature stable spectrally-selective solar absorber based on cermet of titanium nitride in SiO2 deposited on lanthanum aluminate, Solar Energy Materials & Solar Cells 160 (2017) 12-17 [33]Y. Wu, C. Wang, Y. Sun, Y. Ning, Y. Liu, Y. Xue, W. Wang, S. Zhao, E. Tomasella, A. Bousquet, Study on the thermal stability of Al/NbTiSiN/NbTiSiON/SiO2 solar selective absorbing coating, Solar Energy 119 (2015) 18-28 [34]N. Selvakumar, N. T. Manikandanath, A. Biswas, H. C. Barshilia, Design and fabrication of highly thermally stable HfMoN/HfON/Al2O3 tandem absorber for solar thermal power generation applications, Solar Energy Materials & Solar Cells 102 (2012) 86-92 [35]M. Konuma, Film Deposition by Plasma Techniques, Springer-Verlag (1992) [36]M. A. Liberman, A. J. Lichtenberg, Principles of Plasma Dischardes and Materials Processing, John Wiley & Sons (1994) [37]R. M. Philip, D. B. Mohan, Investigation of chemical inertness of DC magnetron sputtered Bi thin films to the ambient conditions for SERS applications, Materials Today: Proceedings 46 (2021) 2945-2949 [38]Y. Xin, H. Zhou, X. Ni, Y. Pan, X. Zhang, J. Zheng, S. Bao, P. Jin, The optical properties of low infrared transmittance WO3-x nanocrystal thin films prepared by DC magnetron sputtering under different oxygen ratios, RSC Advances (2015) [39]V. Pelenovich, H. Liu, X. Zeng, Y. Liu, K. Liu, B. Yang, Graded solar selective absorbers deposited by non-equilibrium RF magnetron sputtering, Solar Energy Materials & Solar Cells 230 (2021) 111188 [40]D. A. Golosov, Balanced magnetic field in magnetron sputtering systems, Vacuum 139 (2017) 109-116 [41]R. A. Scholl, Power systems for reactive sputtering of insulating films, Surface and Coatings Technology 93 (1997) 7-13 [42]T. Mizoguchi, T. Imajo, J. Chen, T. Sekiguchi, T. Suemasu, K. Toko, Composition dependent properties of p- and n-type polycrystalline group-IV alloy thin films, Jourmal of Alloys and Compounds 887 (2021) 161306 [43]K. A. Lozovoy, A. G. Korotaev, A. P. Kokhanenko, V. V. Dirko, A. V. Voitsekhovski, Surface and Coatings Technology 384 (2020) 125289 [44]B. J. Hinch, L. H. Dubois, Water adsorption on Cu(111): evidence for Volmer—Weber film growth, Chemical Physics Letters 181 (1991) 10-15 [45]G. Springholz, Z. Frank, G. Bauer, The origin of surface roughening in lattice-mismatched Frank van der Merwe type heteroepitaxy, Thin Solid Films 267 (1995) 15-23 [46]D. Jiles, Introduction to the Electronic Properties of Materials, Chapman & Hall (1994) [47]B. E. Sernelius, K. Berggren, Z. C. Jin, I. Hamberg, Band-gap tailoring of Zno by means of heavy Al doping, Physical review. B, Condensed matter 37 (1988) 10244-10248 [48]W. Wang, X. Huan, C. Wang, Thermal annealing characteristics of solar selective absorber coatings based on nano-multilayered MoOx films, Ceramics International 46 (2020) 27219-27225 [49]K. Sheth, P. Kondaiah, K. Niranjan, S. Bysakh, G. Srinivas, H. C. Barshilia, Enhanced photothermal conversion in nanometric scale MoOx multilayers with Al2O3 passivation layer, Thin Solid Films 701 (2020) 137947 [50]N. Oka, H. Watanabe, Y. Sato, Study on MoO3−x films deposited by reactive sputtering for organic light-emitting diodes, Journal of Vacuum Science & Technology A 28, 886 (2010)
|