|
1.恩主公醫院 . (2020). 腦中風衛教手冊109年修訂. 2.高雄榮民總醫院神經外科許育弘醫師 . (2021). 腦中風治療新技術:腦血管機械取栓手術. 讀取於2022/2/24, 從 https://org.vghks.gov.tw/ns/cp.aspx?n=03C528E27D3E70C7&Create=1 3.國民健康署 . (2021). 無聲的殺手 心血管疾病. 讀取於 2022/2/24, 從 https://www.mohw.gov.tw/cp-5013-58093-1.html 4.嘉義基督教醫院藥劑科藥師蔡佩芬, & 許育瑋 . (2010). 高血壓與慢性腎臟性疾病. 讀取於 2022/2/24, 從 https://www.taiwan-pharma.org.tw/magazine/102/126-131.pdf 5.健談-健康資訊分享平台 . (2022). 慢性腎臟病共分五期,身體反應不可輕忽. 愛長照. 讀取於 2022/2/23, 從 https://www.ilong-termcare.com/Article/Detail/1592 6.江慧珺, & 林倖妃 . (2021). 洗腎率世界第一、慢性腎臟病盛行率世界第三,「新國病」怎麼救?. 天下雜誌健康專欄. 讀取於 2022/3/13, 從 https://www.cw.com.tw/article/5115247 7.康達知識庫 . (2022). 尿毒症是什麼?一次了解尿毒症症狀、治療以及如何預防. 讀取於 2022/2/24, 從 https://kb.commonhealth.com.tw/library/66.html 8.康健雜誌 . (2017). 40歲起腎功能開始退化!中西醫教聰明顧腎. 康健. 讀取於 2022/2/24, 從 https://www.commonhealth.com.tw/article/74829 9.李俊宏, & 古清仁 . (2010). 類神經網路與資料探勘技術在醫療診斷之應用研究 10.梁嘉德 . (2018). 肝癌病患經治療後腫瘤復發分析與預測模式的建立 11.林以璿 . (2018). 慢性腎臟病分成五期三階段 醫師教你每階段的身體照護方式!. Heho健康. 讀取於 2022/2/23, 從 https://heho.com.tw/archives/27329 12.馬偕紀念醫院神經外科衛教資訊 . (2022). 小中風是不是過了就算了? 讀取於 2022/2/24, 從 https://www.mmh.org.tw/taitam/neu_su/index4%20health%20education/index4_1.html 13.美國中風協會. (2020). Let’s Talk About a Stroke Diagnosis, 2. 14.三軍總醫院心臟內科 . (2022). 高血脂症. 讀取於 2022/2/24, 從 https://wwwv.tsgh.ndmctsgh.edu.tw/unit/10012/12867 15.世界衛生組織 . (2021a). Diabetes. 讀取於 2022/2/23, 從 https://www.who.int/health-topics/diabetes#tab=tab_1 16.世界衛生組織 . (2021b). Hypertension. 讀取於 2022/2/23, 從 https://www.who.int/news-room/fact-sheets/detail/hypertension 17.台大醫院健康電子報 . (2010). 腦中風的預防與保健. 讀取於 2022/2/24, 從 https://epaper.ntuh.gov.tw/health/201011/special_1_1.html 18.台灣腦中風學會 . (2014). 腦中風患者戒菸治療共識. 讀取於 2022/2/24, 從 http://ttw3.mmh.org.tw/neuroweb/pdf_files/%E8%85%A6%E4%B8%AD%E9%A2%A8%E6%82%A3%E8%80%85%E6%88%92%E8%8F%B8%E6%B2%BB%E7%99%82%E5%85%B1%E8%AD%98_201411.pdf 19.臺中榮總全球資訊網 . (2022). 暫時性腦缺血. 臺中榮民總醫院—全球資訊網 (中文版). 新聞, 臺中榮民總醫院. 讀取於 2022/2/24從 https://www.vghtc.gov.tw/ 20.王彩融醫師 . (2017). 家人尿毒症,我該怎麼辦?腎臟病會不會遺傳?. 照護線上. 讀取於 2022/02/24, 從 https://www.careonline.com.tw/2017/12/heritability-ESRD.html 21.衛生福利部中央健康保險署 . (2016). 中風簡介. 衛生福利部中央健康保險署. 文字, 衛生福利部中央健康保險署. 讀取於 2022/2/24, 從 https://www.nhi.gov.tw/Content_List.aspx?n=38C94359C0AB7623&topn=5FE8C9FEAE863B46&Create=1 22.衛生福利部中央健康保險署 . (2022). 健保醫療品質專區. 衛生福利部中央健康保險署. 文字, 衛生福利部中央健康保險署. 讀取於 2022/2/23, 從 https://www.nhi.gov.tw/mqinfo/Content.aspx?List=1&Type=Stroke 23.徐佳蓁 . (2021). 慢性腎臟病:定義、原因、症狀、診斷、治療. Hello 醫師. 讀取於 2022/2/24, 從 https://helloyishi.com.tw/urological-health/kidney-disease/chronic-kidney-disease/ 24.陳亦雲 . (2018). 腎臟病的10大徵兆,你中了幾個?. Heho健康. 讀取於 2022/2/24, 從 https://heho.com.tw/archives/11071 25.英格蘭國民保健署 N. H. S. of U. K. . (2017a). Stroke—Diagnosis. NHS.UK. 讀取於2022/2/23, 從 https://www.nhs.uk/conditions/stroke/diagnosis/ 26.英格蘭國民保健署 N. H. S. of U. K. . (2017b). Stroke—Treatment. NHS.UK. 讀取於 2022/2/23, 從 https://www.nhs.uk/conditions/stroke/treatment/ 27.永和耕莘醫院神經內科 . (2018). 識別腦中風 牢記FAST口訣. 讀取於 2022/2/23, 從 http://www.cthyh.org.tw/?aid=304&pid=7&page_name=detail&iid=87 28.張浤榮 . (2020). 認識慢性腎臟病. 讀取於2022/2/23, 從 http://web.csh.org.tw/web/cshmagazine/?p=540 29.長安神經醫學中心 . (2017). 腦中風診斷利器. 讀取於2022/2/24, 從 http://www.everanhospital.com.tw/neuro/team/item/187.html 30.Aamodt, A., & Plaza, E. . (1994). Case-Based Reasoning: Foundational Issues, Methodological Variations, and System Approaches. AI Communications, 7(1), 39–59. IOS Press. 31.Alicic, R. Z., Rooney, M. T., & Tuttle, K. R. . (2017). Diabetic Kidney Disease: Challenges, Progress, and Possibilities. Clinical journal of the American Society of Nephrology: CJASN, 12(12), 2032–2045. 32.Alkronz, E. S., Moghayer, K. A., Meimeh, M., Gazzaz, M., Abu-Nasser, B. S., & Abu-Naser, S. S. . (2019). Prediction of Whether Mushroom is Edible or Poisonous Using Back-propagation Neural Network. IJARW. 讀取於 2022/2/23, 從 http://dspace.alazhar.edu.ps/xmlui/handle/123456789/126 33.Baker, M., & Perazella, M. A. . (2020). NSAIDs in CKD: Are They Safe? American Journal of Kidney Diseases: The Official Journal of the National Kidney Foundation, 76(4), 546–557. 34.de Boer, P.-T., Kroese, D. P., Mannor, S., & Rubinstein, R. Y. . (2005). A Tutorial on the Cross-Entropy Method. Annals of Operations Research, 134(1), 19–67. 35.Botev, R., Mallié, J.-P., Couchoud, C., Schück, O., Fauvel, J.-P., Wetzels, J. F. M., Lee, N., et al. (2009). Estimating Glomerular Filtration Rate: Cockcroft–Gault and Modification of Diet in Renal Disease Formulas Compared to Renal Inulin Clearance. Clinical Journal of the American Society of Nephrology, 4(5), 899–906. 36.Bryson, A. E., & Ho, Y.-C. . (20). Applied Optimal Control: Optimization, Estimation, and Control. Cambridge: Cambridge University Press. 37.Chakravarti, M., & Kothari, T. . (2015). A Comprehensive Study On The Applications Of Machine Learning For Diagnosis Of Cancer. ArXiv:1505.01345 [cs]. 讀取於 2022/2/23, 從 http://arxiv.org/abs/1505.01345 38.Chen, R., Ovbiagele, B., & Feng, W. . (2016). Diabetes and Stroke: Epidemiology, Pathophysiology, Pharmaceuticals and Outcomes. The American Journal of the Medical Sciences, 351(4), 380–386. 39.Chen, T. K., Knicely, D. H., & Grams, M. E. . (2019). Chronic Kidney Disease Diagnosis and Management: A Review. JAMA, 322(13). 40.Chen, Z., Huang, A., & Qiang, X. . (2020). Improved neural networks based on genetic algorithm for pulse recognition. Computational Biology and Chemistry, 88. 41.Chiong, R., Fan, Z., Hu, Z., & Chiong, F. . (2021). Using an improved relative error support vector machine for body fat prediction. Computer Methods and Programs in Biomedicine, 198. 42.Cho, N. H., Shaw, J. E., Karuranga, S., Huang, Y., da Rocha Fernandes, J. D., Ohlrogge, A. W., & Malanda, B. . (2018). IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Research and Clinical Practice, 138, 271–281. 43.Clerc, M. . (1999). The swarm and the queen: Towards a deterministic and adaptive particle swarm optimization. Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 44.Cortes, C., & Vapnik, V. . (1995). Support-vector networks. Machine Learning, 20(3), 273–297. 45.Cunningham, P. . (1998). CBR: Strengths and Weaknesses. 46.Di Legge, S., Koch, G., Diomedi, M., Stanzione, P., & Sallustio, F. . (2012). Stroke prevention: Managing modifiable risk factors. Stroke Research and Treatment, 2012. 47.Drawz, P. E., Sedor, J. R., & Hostetter, T. H. . (2012). Family History and Kidney Disease. American Journal of Kidney Diseases, 59(1), 9–10. Elsevier. 48.Erb, R. J. . (1993). Introduction to Backpropagation Neural Network Computation. Pharmaceutical Research, 10(2), 165–170. 49.Fawcett, T. . (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861–874. 50.Gautam, A., Bhateja, V., Tiwari, A., & Satapathy, S. C. . (2018). An Improved Mammogram Classification Approach Using Back Propagation Neural Network. 收入 S. C. Satapathy, V. Bhateja, K. S. Raju, & B. Janakiramaiah , Data Engineering and Intelligent Computing, Advances in Intelligent Systems and Computing (卷 542, 頁 369–376). Singapore: Springer Singapore. 51.Geetha, V., Aprameya, K. S., & Hinduja, D. M. . (2020). Dental caries diagnosis in digital radiographs using back-propagation neural network. Health Information Science and Systems, 8(1). 52.Goh, A. T. C. . (1995). Back-propagation neural networks for modeling complex systems. Artificial Intelligence in Engineering, 9(3), 143–151. 53.Guessoum, S., Laskri, M. T., Hayet, D., & Khadir, M. . (2012). Combining Case and Rule Based Reasoning for the Diagnosis and Therapy of Chronic Obstructive Pulmonary Disease, 5. 54.Gupta, N. . (2013). Artificial Neural Network. Network and Complex Systems, 3(1), 24. 55.Hans, C. . (2009). Bayesian lasso regression. Biometrika, 96(4), 835–845. 56.Harrell , F. E. . (2015). Regression Modeling Strategies: With Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis. Springer Series in Statistics. Cham: Springer International Publishing. 57.He, Z., Xi, H., Ding, T., Wang, J., & Li, Z. . (2021). Energy efficiency optimization of an integrated heat pipe cooling system in data center based on genetic algorithm. Applied Thermal Engineering, 182. 58.Hebert, K., Dias, A., Delgado, M. C., Franco, E., Tamariz, L., Steen, D., Trahan, P., et al. (2010). Epidemiology and survival of the five stages of chronic kidney disease in a systolic heart failure population. European Journal of Heart Failure, 12(8), 861–865. 59.Hecht-Nielsen, R. . (1988). Theory of the backpropagation neural network. Neural Networks, 1, 445. 60.Hoerl, A. E., & Kennard, R. W. . (1970). Ridge Regression: Applications to Nonorthogonal Problems. Technometrics, 12(1), 69–82. 61.Holland, J. H. . (1984). Genetic Algorithms and Adaptation. 收入 O. G. Selfridge, E. L. Rissland, & M. A. Arbib , Adaptive Control of Ill-Defined Systems (頁 317–333). Boston, MA: Springer US. 62.Hsieh, C.-Y., Su, C.-C., Shao, S.-C., Sung, S.-F., Lin, S.-J., Yang Kao, Y.-H., & Lai, E. C.-C. . (2019). Taiwan’s National Health Insurance Research Database: Past and future. Clinical Epidemiology, Volume 11, 349–358. 63.Imran, M., Hashim, R., & Khalid, N. E. A. . (2013). An Overview of Particle Swarm Optimization Variants. Procedia Engineering, 53, 491–496. 64.James, G., Witten, D., Hastie, T., & Tibshirani, R. . (2013). An introduction to statistical learning: With applications in R. Springer texts in statistics. New York: Springer. 65.Kalyani, R., Sathya, P. D., & Sakthivel, V. P. . (2020). Trading strategies for image segmentation using multilevel thresholding aided with minimum cross entropy. Engineering Science and Technology, an International Journal, 23(6), 1327–1341. 66.Kazancioğlu, R. . (2013). Risk factors for chronic kidney disease: An update. Kidney International Supplements, 3(4), 368–371. 67.Kennedy, J., & Eberhart, R. . (1995). Particle swarm optimization. Proceedings of ICNN’95—International Conference on Neural Networks (卷 4, 頁 1942–1948). 發表於 ICNN’95 - International Conference on Neural Networks, Perth, WA, Australia: IEEE. 68.Kim, H.-C., Pang, S., Je, H.-M., Kim, D., & Yang Bang, S. . (2003). Constructing support vector machine ensemble. Pattern Recognition, 36(12), 2757–2767. 69.Kolodner, J. L. . (1992). An introduction to case-based reasoning. Artificial Intelligence Review, 6(1), 3–34. 70.Kuo, H.-W., Tsai, S.-S., Tiao, M.-M., & Yang, C.-Y. . (2007). Epidemiological Features of CKD in Taiwan. American Journal of Kidney Diseases, 49(1), 46–55. 71.Lamy, J.-B., Sekar, B., Guezennec, G., Bouaud, J., & Séroussi, B. . (2019). Explainable artificial intelligence for breast cancer: A visual case-based reasoning approach. Artificial Intelligence in Medicine, 94, 42–53. 72.Li, N., Wang, J., Wu, L., & Bentley, Y. . (2021). Predicting monthly natural gas production in China using a novel grey seasonal model with particle swarm optimization. Energy, 215. 73.Meyer, D., Leisch, F., & Hornik, K. . (2003). The support vector machine under test. Neurocomputing, 55(1–2), 169–186. 74.Mirjalili, S. . (2019). Evolutionary Algorithms and Neural Networks: Theory and Applications. Studies in Computational Intelligence (1st ed. 2019.). Cham: Springer International Publishing : Imprint: Springer. 75.Montgomery, D. C., Peck, E. A., & Vining, G. G. . (2012). Introduction to linear regression analysis. Wiley series in probability and statistics (5th ed.). Hoboken, NJ: Wiley. 76.Nayak-Rao, S., & Shenoy, M. . (2017). Stroke in patients with chronic kidney disease…: How do we approach and manage it? Indian Journal of Nephrology, 27(3). 77.Noble, W. S. . (2006). What is a support vector machine? Nature Biotechnology, 24(12), 1565–1567. 78.Oliva, D., Hinojosa, S., Cuevas, E., Pajares, G., Avalos, O., & Gálvez, J. . (2017). Cross entropy based thresholding for magnetic resonance brain images using Crow Search Algorithm. Expert Systems with Applications, 79, 164–180. 79.On behalf of the World Kidney Day Steering Committee, Kovesdy, C. P., Furth, S. L., & Zoccali, C. . (2017). Obesity and kidney disease: Hidden consequences of the epidemic. Journal of Nephrology, 30(1), 1–10. 80.Oyelade, O. N., & Ezugwu, A. E. . (2020). A case-based reasoning framework for early detection and diagnosis of novel coronavirus. Informatics in Medicine Unlocked, 20. 81.Palupi Rini, D., Mariyam Shamsuddin, S., & Sophiyati Yuhaniz, S. . (2011). Particle Swarm Optimization: Technique, System and Challenges. International Journal of Computer Applications, 14(1), 19–27. 82.Pan, C., Ju, T. R., Lee, C. C., Chen, Y.-P., Hsu, C.-Y., Hung, D.-Z., Chen, W.-K., et al. (2018). Alcohol use disorder tied to development of chronic kidney disease: A nationwide database analysis. PLOS ONE, 13(9), e0203410. 83.Perez, B., Lang, C., Henriet, J., Philippe, L., & Auber, F. . (2021). Risk prediction in surgery using case-based reasoning and agent-based modelization. Computers in Biology and Medicine, 128, 104040. 84.Rossides, G., Metcalfe, B., & Hunter, A. . (2021). Particle Swarm Optimization—An Adaptation for the Control of Robotic Swarms. Robotics, 10(2), 58. 85.Rumelhart, D. E., Hinton, G. E., & Williams, R. J. . (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533–536. 86.Sai Rayala, S., & Ashok Kumar, N. . (2020). Particle Swarm Optimization for robot target tracking application. Materials Today: Proceedings, 33, 3600–3603. 87.Selleri, S., Mussetta, M., Pirinoli, P., Zich, R. E., & Matekovits, L. . (2006). Some Insight Over New Variations of the Particle Swarm Optimization Method. IEEE Antennas and Wireless Propagation Letters, 5, 235–238. 88.Shahid, A. H., & Singh, M. P. . (2020). A Novel Approach for Coronary Artery Disease Diagnosis using Hybrid Particle Swarm Optimization based Emotional Neural Network. Biocybernetics and Biomedical Engineering, 40(4), 1568–1585. 89.Shannon, C. E. . (1948). A Mathematical Theory of Communication. Bell System Technical Journal, 27(3), 379–423. 90.Shia, W.-C., & Chen, D.-R. . (2021). Classification of malignant tumors in breast ultrasound using a pretrained deep residual network model and support vector machine. Computerized Medical Imaging and Graphics, 87. 91.Soumaya, Z., Drissi Taoufiq, B., Benayad, N., Yunus, K., & Abdelkrim, A. . (2021). The detection of Parkinson disease using the genetic algorithm and SVM classifier. Applied Acoustics, 171. 92.del Valle, Y., Venayagamoorthy, G. K., Mohagheghi, S., Hernandez, J.-C., & Harley, R. G. . (2008). Particle Swarm Optimization: Basic Concepts, Variants and Applications in Power Systems. IEEE Transactions on Evolutionary Computation, 12(2), 171–195. 93.Vikse, B. E., Irgens, L. M., Leivestad, T., Hallan, S., & Iversen, B. M. . (2008). Low Birth Weight Increases Risk for End-Stage Renal Disease. Journal of the American Society of Nephrology, 19(1), 151–157. 94.Wang, S.-C. . (2003). Interdisciplinary computing in Java programming. Boston: Kluwer Academic. 95.Werbos, P. J. . (1975). Beyond regression: New tools for prediction and analysis in the behavioral sciences. 96.Wu, C.-L., Tsai, C.-C., Kor, C.-T., Tarng, D.-C., Lian, I.-B., Yang, T.-H., Chiu, P.-F., et al. (2016). Stroke and Risks of Development and Progression of Kidney Diseases and End-Stage Renal Disease: A Nationwide Population-Based Cohort Study. PLOS ONE, 11(6), e0158533. 97.Xu, J., Tan, W., & Li, T. . (2020). Predicting fan blade icing by using particle swarm optimization and support vector machine algorithm. Computers & Electrical Engineering, 87. 98.Xu, W., Jiang, L., & Li, C. . (2021). Improving data and model quality in crowdsourcing using cross-entropy-based noise correction. Information Sciences, 546, 803–814. 99.Yacoub, R., Habib, H., Lahdo, A., Al Ali, R., Varjabedian, L., Atalla, G., Kassis Akl, N., et al. (2010). Association between smoking and chronic kidney disease: A case control study. BMC Public Health, 10(1). 100.Ying, X. . (2019). An Overview of Overfitting and its Solutions. Journal of Physics: Conference Series, 1168. 101.Zhou, G., Moayedi, H., Bahiraei, M., & Lyu, Z. . (2020). Employing artificial bee colony and particle swarm techniques for optimizing a neural network in prediction of heating and cooling loads of residential buildings. Journal of Cleaner Production, 254.
|