中文文獻
全聯會世界醫師會工作小組(2008)。世界醫師會遠距醫療倫理聲明。臺灣醫界,51(2),33-33。https://doi.org/10.30044/TMJ.200802.0009
行政院內政衛福勞動處(2020年4月2日)。COVID–19(武漢肺炎)疫情現況及應處作為。https://www.ey.gov.tw/Page/448DE008087A1971/07e61433-6165-42b2-845c-a62411a14a74
行政院主計總處(2021年12月6日)。國情統計通報(第231號)。https://reurl.cc/OvjpYX
何秉樺、黃朱岑、劉育昇(2021)。遠距醫療實施之關鍵成效因素初探。澄清醫護管理雜誌,17(2),27-36。https://www.airitilibrary.com/Publication/alDetailedMesh?DocID=18136702-202104-202104060021-202104060021-27-36
何虹慧(2022)。COVID-19疫情衝擊影響民眾使用遠距醫療意願之研究。嘉南藥理大學醫務管理系研究所碩士論文。https://hdl.handle.net/11296/an89vn李伯璋、陳時中、邱泰源、陳其邁(2020)。台灣運用醫療資訊科技,來面對「COVID-19」。臺灣醫界,63(5),8-12。https://www.airitilibrary.com/Publication/alDetailedMesh?DocID=17263603-202005-202005180009-202005180009-8-12
李卓倫、陳文意、陳慈純、洪弘昌(2013)。台灣發展遠距健康照護的現況與挑戰。醫學與健康期刊,2(2),1-10。https://www.airitilibrary.com/Publication/alDetailedMesh?DocID=23046856-201309-201311130033-201311130033-1-10
李祈旻(2013)。影響醫師使用遠距醫療因素之探討。義守大學醫務管理學系研究所碩士論文。https://hdl.handle.net/11296/hx967b李蘭(1991)。健康行為的概念與研究。中華民國公共衛生學會雜誌,10(5),199-211。https://doi.org/10.6288/JNPHARC1991-10-05-01
林侑璇、黃若筠、游凱迪、盧靜敏、李婉萍、黃志傑、林詠青、郭俊賢、何麗莉(2020)。臺灣
COVID-19邊境檢疫措施與成果。疫情報導,36(15),226-234。https://doi.org/10.6524/EB.202008_36(15).0002
林淑霞(2009)。醫院創新服務的商業模式–以台灣某醫院遠距心臟照護為例。元智大學管理研究所碩士在職專班碩士論文。https://hdl.handle.net/11296/8xwq2t林惠琴(2022年4月21日)。人口染疫率達到15%至20% 陳時中:走入與病毒共存。自由時報。https://news.ltn.com.tw/news/life/breakingnews/3900965
邱鴻琳(2002)。遠距醫療所衍生的價值與衝擊研析。圖文傳播學報,(1),205-213。https://doi.org/10.6230/GACJ.200202_(1).0005
洪啟盛(2021)。遠距醫療在偏鄉醫療照顧的應用。台灣醫學,25(5),634-642。10.6320/FJM.202109_25(5).0008
英國廣播公司新聞(2021年2月9日)。新冠病毒溯源 世衛與中國聯合調查的三大結論與看點。https://www.bbc.com/zhongwen/trad/world-55997370
莊忠憲(2022)。應用科技接受模式探討民眾對遠距醫療的需求及使用意向調查。弘光科技大學健康事業管理研究所碩士論文。https://hdl.handle.net/11296/wck5fu莊雅涵(2022)。探討疫情時代下民眾對於遠距醫療服務之使用意願。元智大學資訊管理學系研究所碩士論文。https://hdl.handle.net/11296/38c36u陸哲駒、陳恆順、鄭伯壎、賴金鑫(2004)。遠距醫療的發展與落實。台灣醫學,8(6),826-831。10.6320/FJM.2004.8(6).11
黃芳銘(2015)。結構方程模式-理論與應用。台灣五南圖書出版股份有限公司。
黃萬翠、陳瑛瑛(2020)。COVID-19(武漢肺炎)防疫戰-成功守住台灣之關鍵。護理雜誌,67(3),75-83。https://doi.org/10.6224/JN.202006_67(3).10
劉容榕(2022)。醫師與科技業者對遠距生理監測裝置之觀點〔未出版之碩士論文〕。國立陽明交通大學醫務管理研究所碩士論文。https://hdl.handle.net/11296/7ey953劉泰儀、周南山、陳柏翰(2020)。新型冠狀病毒(COVID-19)對台灣營造產業影響之初探。土木水利,47(1),20–25。https://doi.org/10.6653/mociche.202002_47(1).0005
衛生福利部(2018年5月11日)。通訊診察治療辦法。全國法規資料庫。https://reurl.cc/AdGDDY
衛生福利部中央健康保險署(2020年2月27日)。全民健康保險特約醫事服務機構提供因COVID-19(武漢肺炎)疫情接受居家隔離或檢疫之保險對象視訊診療作業須知。https://reurl.cc/WGaQEy
衛生福利部中央健康保險署(2021年12月15日)。虛擬健保卡•遠距好就醫-拉近我們與醫師的距離。https://www.mohw.gov.tw/cp-5023-64429-1.html
衛生福利部中央健康保險署(2023a年3月23日)。最新全民健保法規公告。https://www.nhi.gov.tw/Law_Detail.aspx?n=5597495EEC8219A1&sms=36A0BB334ECB4011&s=6D1A8B2A9A97B8E2
衛生福利部中央健康保險署(2023b年3月24日)。嚴重特殊傳染性肺炎中央流行疫情指揮中心 函。https://reurl.cc/d7K8bV
衛生福利部疾病管制署(2020a年4月27日)。嚴重特殊傳染性肺炎 疾病介紹。https://www.cdc.gov.tw/Category/Page/vleOMKqwuEbIMgqaTeXG8A
衛生福利部疾病管制署(2020b年5月14日)。中央疫情指揮中心。https://covid19.mohw.gov.tw/ch/cp-4825-53646-205.html
衛生福利部疾病管制署(2021年3月22日)。疾管家「Taiwan V-Watch」COVID-19疫苗接種健康回報系統正式上線。https://www.mohw.gov.tw/cp-16-58744-1.html
衛生福利部疾病管制署(2022a年4月11日)。COVID-19確定病例個案居家照護之醫療協助措施。https://www.cdc.gov.tw/Bulletin/Detail/EMtWNUgGTEC3MTAPQ5ThLQ?typeid=9
衛生福利部疾病管制署(2022b年3月8日)。民眾可運用「COVID-19防治一網通」疫苗地圖,就近查詢COVID-19疫苗合約醫療院所接種資訊。https://www.mohw.gov.tw/cp-16-67506-1.html
衛生福利部疾病管制署(2022c年4月12日)。「臺灣社交距離APP」功能已優化,請民眾踴躍下載使用,落實自主防疫。https://www.cdc.gov.tw/Bulletin/Detail/QR_G_dvYgb7Hgwj7NJD5iA?typeid=9
衛生福利部疾病管制署(2022d年10月11日)。可控制狀況下與病毒共存目標。https://www.cdc.gov.tw/File/Get/gqMf0uruK93DTmn4PcH6xQ
衛生福利部疾病管制署(2023a年3月14日)。新型冠狀病毒(SARS-CoV-2)感染臨床處置指引 第二十三版。https://www.cdc.gov.tw/Category/Page/xCSwc5oznwcqunujPc-qmQ
衛生福利部疾病管制署(2023b年3月2日)。新增78例Omicron亞型變異株確定病例,分別為45例本土個案及33例境外移入。https://www.cdc.gov.tw/Category/ListContent/EmXemht4IT-IRAPrAnyG9A?uaid=yyXjoQZnMYIr2XHf5Yu0YA
衛生福利部疾病管制署(2023c年3月1日)。「做好檢疫,抵臺簡易」旅客搭機前暨入境檢疫配合事項。https://www.cdc.gov.tw/File/Get/TY2rJvAzexx5sO3m4NRspg
衛生福利部醫事司(2018年5月11日)。衛福部公告通訊診療辦法 運用科技提升醫療照護效能與可近性。https://www.mohw.gov.tw/fp-16-41136-1.html
駱詩晨(2021)。以科技接受度模式探討醫院就診智慧服務之關鍵因素及使用意願-以臺大醫院雲林分院為例。國立雲林科技大學創意生活設計系碩士論文。https://hdl.handle.net/11296/2p3588醫聯網(2022年2月16日)。疫後就診行為改變調查:近四成民眾改採線上詢問。https://med-net.com/Media/More/44303669-6a11-4f45-996b-0c65d82f5b10
英文文獻
Abdalla, Y. A. (2019). Critical Factors Determining Adoption of Telemedicine. International Journal of Online and Biomedical Engineering. https://doi.org/10.3991/ijoe.v15i08.10492
Acar, D., & Kıcali, N. Z. (2021). An Integrated Approach to COVID-19 Preventive Behaviour Intentions: Protection Motivation Theory, Information Acquisition, and Trust. Social Work in Public Health, 37(5), 419–434. https://doi.org/10.1080/19371918.2021.2018082
Adenuga, K. I., Iahad, N. A., & Miskon, S. (2017). Towards reinforcing telemedicine adoption amongst clinicians in Nigeria. International Journal of Medical Informatics, 104, 84–96. https://doi.org/10.1016/j.ijmedinf.2017.05.008
Aggelidis, V. P., & Chatzoglou, P. D. (2009). Using a modified technology acceptance model in hospitals. International Journal of Medical Informatics, 78(2), 115–126. https://doi.org/10.1016/j.ijmedinf.2008.06.006
Agha, Z., Schapira, R. M., Laud, P. W., McNutt, G. M., & Roter, D. L. (2009). Patient Satisfaction with Physician–Patient Communication During Telemedicine. Telemedicine Journal and E-health, 15(9), 830–839. https://doi.org/10.1089/tmj.2009.0030
Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179–211. https://doi.org/10.1016/0749-5978(91)90020-t
Ajzen, I., & Fishbein, M. (1975). A Bayesian analysis of attribution processes. Psychological Bulletin, 82(2), 261–277. https://doi.org/10.1037/h0076477
Alexandra, S., Handayani, P. W., & Azzahro, F. (2021). Indonesian hospital telemedicine acceptance model: the influence of user behavior and technological dimensions. Heliyon, 7(12), e08599. https://doi.org/10.1016/j.heliyon.2021.e08599
Al-Gahtani, S. S., & King, M. (1999). Attitudes, satisfaction and usage: Factors contributing to each in the acceptance of information technology. Behaviour & Information Technology, 18(4), 277–297. https://doi.org/10.1080/014492999119020
Anderson, J. M., & Gerbing, D. W. (1988). Structural equation modeling in practice: A review and recommended two-step approach. Psychological Bulletin, 103(3), 411–423. https://doi.org/10.1037/0033-2909.103.3.411
Anker, S. D., Koehler, F., & Abraham, W. T. (2011). Telemedicine and remote management of patients with heart failure. The Lancet, 378(9792), 731–739. https://doi.org/10.1016/s0140-6736(11)61229-4
Asvinigita, L. R. M., Piartrini, P. S., Suprapti, N. W. S., & K, I. G. N. J. a. W. (2022). Application of Theory of Reasoned Action (TRA) to Explain Continued Intention to Adopt (CIA) MHealth Services. Webology, 19(1), 4952–4966. https://doi.org/10.14704/web/v19i1/web19332
Balkhy, H. H., Abolfotouh, M. A., Al-Hathlool, R. H., & Al-Jumah, M. A. (2010). Awareness, attitudes, and practices related to the swine influenza pandemic among the Saudi public. BMC Infectious Diseases, 10(1). https://doi.org/10.1186/1471-2334-10-42
Bandura, A., and Cervone, D. (1986). Differential engagement of self-reactive influences in cognitive motivation. Organizational Behavior and Human Decision Processes, 38, 92-113.
Bashshur, R. L., Reardon, T. G., & Shannon, G. W. (2000). Telemedicine: A New Health Care Delivery System. Annual Review of Public Health, 21(1), 613–637. https://doi.org/10.1146/annurev.publhealth.21.1.613
Baudier, P., Kondrateva, G., & Ammi, C. (2020). The future of Telemedicine Cabin? The case of the French students’ acceptability. Futures, 122, 102595. https://doi.org/10.1016/j.futures.2020.102595
Bawack, R. E., & Kamdjoug, J. R. K. (2018). Adequacy of UTAUT in clinician adoption of health information systems in developing countries: The case of Cameroon. International Journal of Medical Informatics, 109, 15–22. https://doi.org/10.1016/j.ijmedinf.2017.10.016
Bennet, A. M., Rappaport, W. H., & Skinner, E. L. (1978). Telehealth Handbook (PHS Publication No. 79–3210). Washington, DC: US Department of Health, Education, and Welfare.
Bird, K. T. (1971). Teleconsultation: A new health information exchange system (Vol. 201). Massachusetts General Hospital.
Blok, M., Van Ingen, E., De Boer, A., & Slootman, M. (2020). The use of information and communication technologies by older people with cognitive impairments: from barriers to benefits. Computers in Human Behavior, 104, 106173. https://doi.org/10.1016/j.chb.2019.106173
Blount, E., Davey, M. G., & Joyce, W. P. (2023). Patient reported satisfaction levels with the use of telemedicine for general surgery—A systematic review of randomized control trials. Surgery in Practice and Science, 12, 100152. https://doi.org/10.1016/j.sipas.2022.100152
Cervino, G., Fiorillo, L., Surace, G., Paduano, V., Fiorillo, M. T., De Stefano, R., Laudicella, R., Baldari, S., Gaeta, M., & Cicciù, M. (2020). SARS-CoV-2 Persistence: Data Summary up to Q2 2020. Data, 5(3), 81. https://doi.org/10.3390/data5030081
Choi, S. L., Hites, L., Bolland, A. C., Lee, J., Payne-Foster, P., & Bissell, K. (2022). Telehealth uptake among middle-aged and older Americans during COVID-19: chronic conditions, social media communication, and race/ethnicity. Aging &Amp; Mental Health, 1–9. https://doi.org/10.1080/13607863.2022.2149696
Churchill, G. A., Jr. (1979). A paradigm for developing better measures of marketing constructs. Journal of Marketing Research, 16(1), 64-73. https://doi.org/10.2307/3150876
Cimperman, M., Brenčič, M., Trkman, P., & De Leonni Stanonik, M. (2013). Older Adults’ Perceptions of Home Telehealth Services. Telemedicine Journal and E-health, 19(10), 786–790. https://doi.org/10.1089/tmj.2012.0272
Cohen, J. B., Bancilhon, J., & Jones, M. P. (2013). South African physicians’ acceptance of e-prescribing technology: an empirical test of a modified UTAUT model. South African Computer Journal, 50. https://doi.org/10.18489/sacj.v50i1.175
Compeau, D., Higgins, C., and Huff, S. (1999). Social Cognitive Theory and Individual Reactions to Computing Technology: A Longitudinal Study. MIS Quarterly, 23, 145-158.
Compeau, D.R., and Higgins, C.A. (1995). Computer Self-Efficacy: Development of a Measure and Initial Test. MIS Quarterly, 19, 189-211.
Cranen, K., Veld, R. H. I. ’., IJzerman, M. J., & Vollenbroek-Hutten, M. M. R. (2011). Change of Patients’ Perceptions of Telemedicine After Brief Use. Telemedicine Journal and E-health, 17(7), 530–535. https://doi.org/10.1089/tmj.2010.0208
Davis, F. D. (1986). A technology acceptance model for empirically testing new end-user information systems: Theory and results. Massachusetts Institute of Technology.
Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1992). Extrinsic and intrinsic motivation to use computers in the workplace 1. Journal of Applied Social Psychology, 22(14), 1111–1132.
Davis, F.D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. Mis Quarterly, 13, 319-340.
Davis, F.D., Bagozzi, R.P., and Warshaw, P.R. (1989). User Acceptance of Computer-Technology - a Comparison of 2 Theoretical-Models. Management Science, 35(8), 982-1003.
Díaz, A., Soriano, J. V., & Beleña, A. (2016). Perceived Vulnerability to Disease Questionnaire: Factor structure, psychometric properties and gender differences. Personality and Individual Differences, 101, 42–49. https://doi.org/10.1016/j.paid.2016.05.036
Dijkstra, T. K., & Henseler, J. (2015). Consistent and asymptotically normal PLS estimators for linear structural equations. Computational Statistics & Data Analysis, 81, 10-23. https://doi.org/10.1016/j.csda.2014.07.008
Diño, M. J. S., & De Guzman, A. B. (2015). Using Partial Least Squares (PLS) in Predicting Behavioral Intention for Telehealth Use among Filipino Elderly. Educational Gerontology, 41(1), 53–68. https://doi.org/10.1080/03601277.2014.917236
Directorate-General for Health and Food Safety(2018, October 1). Provision of a market study on telemedicine, 1 October 2018. https://health.ec.europa.eu/publications/provision-market-study-telemedicine_en
Dwivedi, Y. K., Shareef, M. A., Simintiras, A. C., Lal, B., & Weerakkody, V. (2016). A generalised adoption model for services: A cross-country comparison of mobile health (m-health). Government Information Quarterly, 33(1), 174–187. https://doi.org/10.1016/j.giq.2015.06.003
Eberhardt, J., & Ling, J. (2021). Predicting COVID-19 vaccination intention using protection motivation theory and conspiracy beliefs. Vaccine, 39(42), 6269–6275. https://doi.org/10.1016/j.vaccine.2021.09.010
Eppright, D. R., Tanner, J. J., & Hunt, J. G. (1994). Knowledge and the ordered protection motivation model: Tools for preventing AIDS. Journal of Business Research, 30(1), 13–24. https://doi.org/10.1016/0148-2963(94)90064-7
Floyd, D. L., Prentice-Dunn, S., & Rogers, R. W. (2000). A Meta-Analysis of Research on Protection Motivation Theory. Journal of Applied Social Psychology, 30(2), 407–429. https://doi.org/10.1111/j.1559-1816.2000.tb02323.x
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50. https://doi.org/10.1177/002224378101800104
Gao, Y., Li, H., & Luo, Y. (2015). An empirical study of wearable technology acceptance in healthcare. Industrial Management &Amp; Data Systems, 115(9), 1704–1723. https://doi.org/10.1108/imds-03-2015-0087
Garavand, A., Aslani, N., Nadri, H., Abedini, S., & Dehghan, S. (2022). Acceptance of telemedicine technology among physicians: A systematic review. Informatics in Medicine Unlocked, 30, 100943. https://doi.org/10.1016/j.imu.2022.100943
Garavand, A., Samadbeik, M., Kafashi, M., & Abhari, S. (2017). Acceptance of Health Information Technologies, Acceptance of Mobile Health: A Review Article. Journal of biomedical physics & engineering, 7(4), 403–408. https://doi.org/10.22086/JBPE.V0I0.416
Gaski, J. F., & Nevin, J. R. (1985). The Differential Effects of Exercised and Unexercised Power Sources in a Marketing Channel. Journal of Marketing Research, 22(2), 130–142. https://doi.org/10.1177/002224378502200203
Gefen, D. (2003). TAM or just plain habit: A look at experienced online shoppers. Journal of End User Computing, 15(3), 1–13. https://doi.org/10.4018/joeuc.2003070101
Gochman, D. S., & Parcel, G. S. (1982). Introduction. Health Education Quarterly, 9(2–3), 5–7. https://doi.org/10.1177/109019818200900201
Gold, A. S., Malhotra, A., & Segars, A. H. (2001). Knowledge Management: An Organizational Capabilities Perspective. Journal of Management Information Systems, 18(1), 185–214. https://doi.org/10.1080/07421222.2001.11045669
Gorbalenya, A. E., Baker, S. S., Baric, R. S., De Groot, R. J., Drosten, C., Gulyaeva, A. A., Haagmans, B. L., Lauber, C., Leontovich, A. M., Neuman, B. W., Penzar, D., Perlman, S., Poon, L. L., Samborskiy, D. V., Sidorov, I. A., Sola, I., & Ziebuhr, J. (2020). The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nature Microbiology, 5(4), 536–544. https://doi.org/10.1038/s41564-020-0695-z
Güler, N. F., & Übeyli, E. D. (2002). Theory and Applications of Telemedicine. Journal of Medical Systems, 26(3), 199–220. https://doi.org/10.1023/a:1015010316958
Guo, X., Han, X., Zhang, X., Dang, Y., & Chen, C. (2015). Investigating m-Health Acceptance from a Protection Motivation Theory Perspective: Gender and Age Differences. Telemedicine Journal and E-health, 21(8), 661–669. https://doi.org/10.1089/tmj.2014.0166
Gupta, B., Dasgupta, S., & Gupta, A. (2008). Adoption of ICT in a government organization in a developing country: An empirical study. Journal of Strategic Information Systems, 17(2), 140–154. https://doi.org/10.1016/j.jsis.2007.12.004
Hair, J.F., Black, W.C., Babin, B.J. and Anderson, R.E. (2010). Multivariate Data Analysis. 7th Edition, Pearson, New York.
Hair Jr, J. F., & Hult, G. T. M. (2016). A primer on partial least squares structural equation modeling (PLS-SEM). Sage Publications.
Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2017a). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM) (2 ed.). Thousand Oaks, CA: Sage.
Hair, J. F., Hult, G. T., Ringle, C., & Sarsedt, M. (2014). A Primer Least Squares Structural Equation Modeling (PLS-SEM). Washington, DC: Sage Publications.
Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2-24. https://doi.org/10.1108/EBR-11-2018-0203
Hair, Jr, J. F., Matthews, L. M., Matthews, R. L., & Sarstedt, M. (2017b). PLS-SEM or CB-SEM: updated guidelines on which method to use. International Journal of Multivariate Data Analysis, 1(2), 107-123. https://doi.org/10.1504/IJMDA.2017.087624
Harst, L., Lantzsch, H., & Scheibe, M. (2019). Theories Predicting End-User Acceptance of Telemedicine Use: Systematic Review. Journal of Medical Internet Research, 21(5), e13117. https://doi.org/10.2196/13117
Hendy, J., & Barlow, J.G. (2012). The adoption of telecare in the community. Community practitioner : the journal of the Community Practitioners' & Health Visitors' Association, 85(3), 41-3.
Henseler, J., Hubona, G. S., & Ray, P. A. (2016). Using PLS path modeling in new technology research: updated guidelines. Industrial Management and Data Systems, 116(1), 2–20. https://doi.org/10.1108/imds-09-2015-0382
Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115-135.
Herzberg, F. I., Mausner, B., & Snyderman, B. (1959). The motivation to work (2nd ed.). New York: John Wiley.
Hood, L., Balling, R., & Auffray, C. (2012). Revolutionizing medicine in the 21st century through systems approaches. Biotechnology Journal, 7(8), 992–1001. https://doi.org/10.1002/biot.201100306
Hoque, M. R., & Sorwar, G. (2017). Understanding factors influencing the adoption of mHealth by the elderly: An extension of the UTAUT model. International Journal of Medical Informatics, 101, 75–84. https://doi.org/10.1016/j.ijmedinf.2017.02.002
Hromatko, I., Tonković, M., & Vranić, A. (2021). Trust in Science, Perceived Vulnerability to Disease, and Adherence to Pharmacological and Non-pharmacological COVID-19 Recommendations. Frontiers in Psychology, 12. https://doi.org/10.3389/fpsyg.2021.664554
Hsieh, H., Kuo, Y., Wang, S., Chuang, B., & Tsai, C. (2016). A Study of Personal Health Record User’s Behavioral Model Based on the PMT and UTAUT Integrative Perspective. International Journal of Environmental Research and Public Health, 14(1). https://doi.org/10.3390/ijerph14010008
Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., Cheng, Z., Yu, T., Xia, J., Wei, Y., Wu, W., Xie, X., Yin, W., Li, H., Liu, M., . . . Cao, B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, 395(10223), 497–506. https://doi.org/10.1016/s0140-6736(20)30183-5
Jagarapu, J., & Savani, R. C. (2021). A brief history of telemedicine and the evolution of teleneonatology. Seminars in Perinatology, 45(5), 151416. https://doi.org/10.1016/j.semperi.2021.151416
Jang, S. H., Kim, R., & Lee, C. (2016). Effect of u-healthcare service quality on usage intention in a healthcare service. Technological Forecasting and Social Change, 113, 396–403. https://doi.org/10.1016/j.techfore.2016.07.030
Jewer, J. (2018). Patients’ intention to use online postings of ED wait times: A modified UTAUT model. International Journal of Medical Informatics, 112, 34–39. https://doi.org/10.1016/j.ijmedinf.2018.01.008
Johnson, E. J., & Hariharan, S. (2017). Public health awareness: knowledge, attitude and behaviour of the general public on health risks during the H1N1 influenza pandemic. Journal of Public Health, 25(3), 333–337. https://doi.org/10.1007/s10389-017-0790-7
Kamal, S. A., Shafiq, M., & Kakria, P. (2020). Investigating acceptance of telemedicine services through an extended technology acceptance model (TAM). Technology in Society, 60, 101212. https://doi.org/10.1016/j.techsoc.2019.101212
Kasl, S. V., & Cobb, S. (1966a). Health Behavior, Illness Behavior and Sick Role behavior. Archives of Environmental Health, 12(2), 246–266. https://doi.org/10.1080/00039896.1966.10664365
Kasl, S. V., & Cobb, S. (1966b). Health Behavior, Illness Behavior, and Sick-Role Behavior. Archives of Environmental Health, 12(4), 531–541. https://doi.org/10.1080/00039896.1966.10664421
Kijsanayotin, B., Pannarunothai, S., & Speedie, S. M. (2009). Factors influencing health information technology adoption in Thailand’s community health centers: Applying the UTAUT model. International Journal of Medical Informatics, 78(6), 404–416. https://doi.org/10.1016/j.ijmedinf.2008.12.005
Kim, S. W., Malhotra, N. K., & Narasimhan, S. (2005). Research Note—Two Competing Perspectives on Automatic Use: A Theoretical and Empirical Comparison. Information Systems Research, 16(4), 418–432. https://doi.org/10.1287/isre.1050.0070
Kissi, J., Dai, B., Dogbe, C. S., Banahene, J., & Ernest, O. (2020). Predictive factors of physicians’ satisfaction with telemedicine services acceptance. Health informatics journal, 26(3), 1866-1880.
Kohnke, A., Cole, M. T., & Bush, R. G. (2014). Incorporating UTAUT Predictors for Understanding Home Care Patients’ and Clinician’s Acceptance of Healthcare Telemedicine Equipment. Journal of Technology Management & Innovation, 9(2), 29–41. https://doi.org/10.4067/s0718-27242014000200003
Lea, J. P., & Tannenbaum, J. S. (2020). The Role of Telemedicine in Providing Nephrology Care in Rural Hospitals. Kidney360, 1(6), 553–556. https://doi.org/10.34067/kid.0001122019
Leppin, A., & Aro, A. R. (2009). Risk Perceptions Related to SARS and Avian Influenza: Theoretical Foundations of Current Empirical Research. International Journal of Behavioral Medicine, 16(1), 7–29. https://doi.org/10.1007/s12529-008-9002-8
Li, W., Liu, W., Liu, S., Li, J., Wang, W., & Li, K. (2021). Perceptions of patients with chronic obstructive pulmonary disease towards telemedicine: A qualitative systematic review. Heart & Lung, 50(5), 675–684. https://doi.org/10.1016/j.hrtlng.2021.03.081
Ling, M., Kothe, E., & Mullan, B. (2019). Predicting intention to receive a seasonal influenza vaccination using Protection Motivation Theory. Social Science & Medicine, 233, 87–92. https://doi.org/10.1016/j.socscimed.2019.06.002
Liu, J. Y. W., Sorwar, G., Rahman, M. S., & Hoque, M. R. (2023). The role of trust and habit in the adoption of mHealth by older adults in Hong Kong: a healthcare technology service acceptance (HTSA) model. BMC Geriatrics, 23(1). https://doi.org/10.1186/s12877-023-03779-4
Lurie, N., & Carr, B. G. (2018). The Role of Telehealth in the Medical Response to Disasters. JAMA Internal Medicine, 178(6), 745. https://doi.org/10.1001/jamainternmed.2018.1314
Maddux, J. E., & Rogers, R. (1983). Protection motivation and self-efficacy: A revised theory of fear appeals and attitude change. Journal of Experimental Social Psychology, 19(5), 469–479. https://doi.org/10.1016/0022-1031(83)90023-9
Makarovs, K., & Achterberg, P. (2017). Contextualizing educational differences in “vaccination uptake”: A thirty nation survey. Social Science & Medicine, 188, 1–10. https://doi.org/10.1016/j.socscimed.2017.06.039
Mathieson, K. (1991). Predicting User Intentions: Comparing the Technology Acceptance Model 77 with the Theory of Planned Behavior. Information Systems Research, 2, 173-191.
McNeill, A., Harris, P. C., & Briggs, P. (2016). Twitter Influence on UK Vaccination and Antiviral Uptake during the 2009 H1N1 Pandemic. Frontiers in Public Health, 4. https://doi.org/10.3389/fpubh.2016.00026
Mengesha, G. G., & Garfield, M. J. (2019). A contextualized IT adoption and use model for telemedicine in Ethiopia. Information Technology for Development, 25(2), 184–203. https://doi.org/10.1080/02681102.2018.1461057
Moore, G.C., & Benbasat, I. (1991). Development of an Instrument to Measure the Perceptions of Adopting an Information Technology Innovation. Inf. Syst. Res., 2, 192-222.
Napitupulu, D., Yacub, R., & Putra, A. H. P. K. (2021). Factor Influencing of Telehealth Acceptance During COVID-19 Outbreak: Extending UTAUT Model. International Journal of Intelligent Engineering and Systems, 14(3), 267–281. https://doi.org/10.22266/ijies2021.0630.23
Nguyen, P. H. (2013). Mothers’ Perceived Vulnerability, Perceived Threat, and Intention to Administer Preventive Medication to Their Children. Contemporary Management Research, 9(4), 399–418. https://doi.org/10.7903/cmr.11093
Nisha, N., Iqbal, M., & Rifat, A. (2019). The Changing Paradigm of Health and Mobile Phones. Journal of Global Information Management, 27(1), 19–46. https://doi.org/10.4018/jgim.2019010102
Okrah, R. (2021). Examining Telemedicine Adoption Among U.S. Patients (Order No. 28965320). Available from Healthcare Administration Database; ProQuest Dissertations & Theses A&I; Publicly Available Content Database. (2638010383). https://www.proquest.com/dissertations-theses/examining-telemedicine-adoption-among-u-s/docview/2638010383/se-2
Ong, A. K. S., Kurata, Y. B., Castro, S. a. D., De Leon, J. P. B., Dela Rosa, H. V., & Tomines, A. P. J. (2022). Factors influencing the acceptance of telemedicine in the Philippines. Technology in Society, 70, 102040. https://doi.org/10.1016/j.techsoc.2022.102040
Ouellette, J. A., & Wood, W. (1998). Habit and intention in everyday life: The multiple processes by which past behavior predicts future behavior. Psychological Bulletin, 124(1), 54–74. https://doi.org/10.1037/0033-2909.124.1.54
Owusu Kwateng, K., Darko-Larbi, O., & Amanor, K. (2022). A modified UTAUT2 for the study of telemedicine adoption. International Journal of Healthcare Management, 1–17. https://doi.org/10.1080/20479700.2022.2088068
Palas, J. U., Sorwar, G., Hoque, M. R., & Sivabalan, A. (2022). Factors influencing the elderly’s adoption of mHealth: an empirical study using extended UTAUT2 model. BMC Medical Informatics and Decision Making, 22(1). https://doi.org/10.1186/s12911-022-01917-3
Palau-Saumell, R., Forgas-Coll, S., Sánchez-García, J., & Robres, E. (2019). User Acceptance of Mobile Apps for Restaurants: An Expanded and Extended UTAUT-2. Sustainability, 11(4), 1210. https://doi.org/10.3390/su11041210
Portz, J. D., Bayliss, E. A., Bull, S., Boxer, R. S., Bekelman, D. B., Gleason, K., & Czaja, S. J. (2019). Using the Technology Acceptance Model to Explore User Experience, Intent to Use, and Use Behavior of a Patient Portal Among Older Adults With Multiple Chronic Conditions: Descriptive Qualitative Study. Journal of Medical Internet Research, 21(4), e11604. https://doi.org/10.2196/11604
Prasetyo, Y. T., Castillo, A. M., Salonga, L. J., Sia, J. A., & Seneta, J. A. (2020). Factors affecting perceived effectiveness of COVID-19 prevention measures among Filipinos during Enhanced Community Quarantine in Luzon, Philippines: Integrating Protection Motivation Theory and extended Theory of Planned Behavior. International Journal of Infectious Diseases, 99, 312–323. https://doi.org/10.1016/j.ijid.2020.07.074
Prentice-Dunn, S., & Rogers, R. (1986). Protection Motivation Theory and preventive health: beyond the Health Belief Model. Health Education Research, 1(3), 153–161. https://doi.org/10.1093/her/1.3.153
Rahi, S. (2021). Assessing individual behavior towards adoption of telemedicine application during COVID-19 pandemic: evidence from emerging market. Library Hi Tech, 40(2), 394–420. https://doi.org/10.1108/lht-01-2021-0030
Rahi, S., Khan, M. M., & Alghizzawi, M. (2020). Factors influencing the adoption of telemedicine health services during COVID-19 pandemic crisis: an integrative research model. Enterprise Information Systems, 15(6), 769–793. https://doi.org/10.1080/17517575.2020.1850872
Ramaswamy, A., Yu, M., Drangsholt, S., Ng, E., Culligan, P. J., Schlegel, P. N., & Hu, J. C. (2020). Patient Satisfaction With Telemedicine During the COVID-19 Pandemic: Retrospective Cohort Study. Journal of Medical Internet Research, 22(9), e20786. https://doi.org/10.2196/20786
Rho, M. J., Choi, I. H., & Lee, J. (2014). Predictive factors of telemedicine service acceptance and behavioral intention of physicians. International Journal of Medical Informatics, 83(8), 559–571. https://doi.org/10.1016/j.ijmedinf.2014.05.005
Rho, M. J., Kim, H., Chung, K., & Choi, I. H. (2015). Factors influencing the acceptance of telemedicine for diabetes management. Cluster Computing, 18(1), 321–331. https://doi.org/10.1007/s10586-014-0356-1
Rogers, E. (1983b). Diffusion of innovations. (3rd ed.) New York: The Free Press.
Rogers, R. W. (1975). A Protection Motivation Theory of Fear Appeals and Attitude Change1. The Journal of Psychology, 91(1), 93–114. https://doi.org/10.1080/00223980.1975.9915803
Rogers, R.W. (1983a) Cognitive and Physiological Processes in Fear Appeals and Attitude Change: A Revised Theory of Protection Motivation. In: Cacioppo, J. and Petty, R., Eds., Social Psychophysiology, Guilford Press, New York, 153-177.
Rogers, R.W., & Prentice-Dunn, S. (1997). Protection motivation theory. In D. Gochman, (Ed.), Handbook of health behavior research: Vol. 1. Determinants of health behavior: Personal and social (pp. 113-132). New York: Plenum.
Rosenstock, I. M. (1974). The Health Belief Model and Preventive Health Behavior. Health Education Monographs, 2(4), 354–386. https://doi.org/10.1177/109019817400200405
Ryu, K., Jarumaneerat, T., Promsivapallop, P., & Kim, M. (2023). What influences restaurant dining out and diners’ self-protective intention during the COVID-19 pandemic: Applying the Protection Motivation Theory. International Journal of Hospitality Management, 109, 103400. https://doi.org/10.1016/j.ijhm.2022.103400
Sabbir, M. M., Taufique, K. M. R., & Nomi, M. (2021). Telemedicine acceptance during the COVID-19 pandemic: User satisfaction and strategic healthcare marketing considerations. Health Marketing Quarterly. https://doi.org/10.1080/07359683.2021.1986988
Sageena, G., Sharma, M., & Kapur, A. (2021). Evolution of Smart Healthcare: Telemedicine During COVID-19 Pandemic. Journal of Institution of Engineers (India) Series B, 102(6), 1319–1324. https://doi.org/10.1007/s40031-021-00568-8
Saiyed, S. M., Nguyen, A., & Singh, R. (2021). Physician Perspective and Key Satisfaction Indicators with Rapid Telehealth Adoption During the Coronavirus Disease 2019 Pandemic. Telemedicine Journal and E-Health, 27(11), 1225–1234. https://doi.org/10.1089/tmj.2020.0492
Salzano, A., D'Assante, R., Stagnaro, F. M., Valente, V., Crisci, G., Giardino, F., Arcopinto, M., Bossone, E., Marra, A. M., & Cittadini, A. (2020). Heart failure management during the COVID-19 outbreak in Italy: a telemedicine experience from a heart failure university tertiary referral centre. European journal of heart failure, 22(6), 1048–1050. https://doi.org/10.1002/ejhf.1911
Scarpa, R., & Thiene, M. (2011). Organic food choices and Protection Motivation Theory: Addressing the psychological sources of heterogeneity. Food Quality and Preference, 22(6), 532–541. https://doi.org/10.1016/j.foodqual.2011.03.001
Schmitz, A., Díaz-Martín, A., & Guillén, M. S. (2022). Modifying UTAUT2 for a cross-country comparison of telemedicine adoption. Computers in Human Behavior, 130, 107183. https://doi.org/10.1016/j.chb.2022.107183
Serrano, K. M., De Sousa Mendes, G. H., Lizarelli, F. L., & Ganga, G. M. D. (2020). Assessing the telemedicine acceptance for adults in Brazil. International Journal of Health Care Quality Assurance, 34(1), 35–51. https://doi.org/10.1108/ijhcqa-06-2020-0098
Shanteau, J., & Pingenot, A. (2009). Subjective expected utility theory. In M. W. Kattan (Ed.), Encyclopedia of Medical Decision Making (pp. 1–7). Sage Publication, Inc..
Sheeran, P., Milne, S., Webb, T. L., & Gollwitzer, P. M. (2005). Implementation intentions and health behaviour.
Shiferaw, K. B., Mengiste, S. A., Gullslett, M. K., Zeleke, A. A., Tilahun, B., Tebeje, T. H., Wondimu, R., Desalegn, S., & Mehari, E. A. (2021). Healthcare providers’ acceptance of telemedicine and preference of modalities during COVID-19 pandemics in a low-resource setting: An extended UTAUT model. PLOS ONE, 16(4), e0250220. https://doi.org/10.1371/journal.pone.0250220
Singh, N., Misra, R., Singh, S., Rana, N. P., & Khorana, S. (2022). Assessing the factors that influence the adoption of healthcare wearables by the older population using an extended PMT model. Technology in Society, 71, 102126. https://doi.org/10.1016/j.techsoc.2022.102126
Sood, S., Mbarika, V., Jugoo, S., Dookhy, R., Doarn, C. R., Prakash, N., & Merrell, R. C. (2007). What is telemedicine? A collection of 104 peer-reviewed perspectives and theoretical underpinnings. Telemedicine Journal and E-Health, 13(5), 573–590. https://doi.org/10.1089/tmj.2006.0073
Sosnowski, R., Kamecki, H., Joniau, S., Walz, J., Klaassen, Z., & Palou, J. (2020). Introduction of Telemedicine During the COVID-19 Pandemic: A Challenge for Now, an Opportunity for the Future. European Urology, 78(6), 820–821. https://doi.org/10.1016/j.eururo.2020.07.007
Sun, Y., Wang, N., Guo, X., & Peng, Z. (2013). Understanding the acceptance of mobile health services: A comparison and integration of alternative models. Journal of Electronic Commerce Research, 14(2), 183-200. https://www.proquest.com/scholarly-journals/understanding-acceptance-mobile-health-services/docview/1372758336/se-2
Tang, M., Holmgren, A. J., McElrath, E. E., Bhatt, A. S., Varshney, A. S., Lee, S. G., Vaduganathan, M., Adler, D. S., & Huckman, R. S. (2022). Investigating the Association Between Telemedicine Use and Timely Follow-Up Care After Acute Cardiovascular Hospital Encounters. JACC, 1(5), 100156. https://doi.org/10.1016/j.jacadv.2022.100156
Tavares, J., & Oliveira, T. (2016). Electronic Health Record Patient Portal Adoption by Health Care Consumers: An Acceptance Model and Survey. Journal of Medical Internet Research, 18(3), e49. https://doi.org/10.2196/jmir.5069
Tavares, J., Goulão, A., & Oliveira, T. (2018). Electronic Health Record Portals adoption: Empirical model based on UTAUT2. Informatics for Health & Social Care, 43(2), 109–125. https://doi.org/10.1080/17538157.2017.1363759
Taylor, S., and Todd, P.A. (1995a). Decomposition and crossover effects in the theory of planned behavior: A study of consumer adoption intentions. International Journal of Research in Marketing, 12, 137-155.
Taylor, S., and Todd, P.A. (1995b). Understanding Information Technology Usage: A Test of Competing Models. Information Systems Research, 6, 144-176.
Thompson, R. L., Higgins, C. A. and Howell, J. M. (1991). Personal computing: toward a conceptual model of utilization. MIS Quarterly, 15(1), 125-143.
Thrall, J. H., & Boland, G. W. (1998). Telemedicine in practice. Seminars in Nuclear Medicine, 28(2), 145–157. https://doi.org/10.1016/s0001-2998(98)80004-4
Triandis H. C. (1977). Interpersonal behavior. Brooks/Cole Pub.
Tuckson, R. V., Edmunds, M., & Hodgkins, M. L. (2017). Telehealth. The New England Journal of Medicine, 377(16), 1585–1592. https://doi.org/10.1056/nejmsr1503323
Turner, M., Kitchenham, B., Brereton, P., Charters, S., & Budgen, D. (2010). Does the technology acceptance model predict actual use? A systematic literature review. Information & Software Technology, 52(5), 463–479. https://doi.org/10.1016/j.infsof.2009.11.005
Venkatesh, V., & Davis, F. D. (2000). A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. Management Science, 46(2), 186–204. https://doi.org/10.1287/mnsc.46.2.186.11926
Venkatesh, V., Morris, M. A., Davis, G. B., & Davis, F. D. (2003). User Acceptance of Information Technology: Toward a Unified View. Management Information Systems Quarterly, 27(3), 425. https://doi.org/10.2307/30036540
Venkatesh, V., Thong, J. Y., & Xu, X. (2012). Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology. Management Information Systems Quarterly, 36(1), 157. https://doi.org/10.2307/41410412
Venkatesh, V., Thong, J. Y., & Xu, X. (2016). Unified Theory of Acceptance and Use of Technology: A Synthesis and the Road Ahead. Journal of the Association for Information Systems, 17(5), 328–376. https://doi.org/10.17705/1jais.00428
Venugopal, P., Priya, S., Manupati, V. K., Varela, M., Machado, J. a. T., & Putnik, G. D. (2018). Impact of UTAUT Predictors on the Intention and Usage of Electronic Health Records and Telemedicine from the Perspective of Clinical Staffs. Lecture Notes in Electrical Engineering, 172–177. https://doi.org/10.1007/978-3-319-91334-6_24
Walrave, M., Waeterloos, C., & Ponnet, K. (2020). Adoption of a Contact Tracing App for Containing COVID-19: A Health Belief Model Approach. JMIR Public Health and Surveillance, 6(3), e20572. https://doi.org/10.2196/20572
Wang, H., Tao, D., Yu, N., & Qu, X. (2020). Understanding consumer acceptance of healthcare wearable devices: An integrated model of UTAUT and TTF. International Journal of Medical Informatics, 139, 104156. https://doi.org/10.1016/j.ijmedinf.2020.104156
Weinstein, N. D. (1993). Testing four competing theories of health-protective behavior. Health Psychology, 12(4), 324–333. https://doi.org/10.1037/0278-6133.12.4.324
Weinstein, R. S., Lopez, A. M., Joseph, B., Erps, K. A., Holcomb, M., Barker, G. P., & Krupinski, E. A. (2014). Telemedicine, Telehealth, and Mobile Health Applications That Work: Opportunities and Barriers. The American Journal of Medicine, 127(3), 183–187. https://doi.org/10.1016/j.amjmed.2013.09.032
Whitten, P. (2005, October 1). Patient and provider satisfaction with the use of telemedicine: Overview and rationale for cautious enthusiasm. https://www.jpgmonline.com/text.asp?2005/51/4/294/19243
Williams, L. E., & Hazer, J. T. (1986). Antecedents and consequences of satisfaction and commitment in turnover models: A reanalysis using latent variable structural equation methods. Journal of Applied Psychology, 71(2), 219–231. https://doi.org/10.1037/0021-9010.71.2.219
Williams, M., Rana, N., Dwivedi, Y., & Lal, B. (2011). Is UTAUT really used or just cited for the sake of it? A systematic review of citations of UTAUT’s originating article.
World Health Organization(2020a, February 12). COVID-19 Public Health Emergency of International Concern (PHEIC) Global research and innovation forum. https://reurl.cc/4QylNR
World Health Organization(2020b, February 12). WHO Director-General's opening remarks at the media briefing on COVID-19 - 11 March 2020. https://reurl.cc/Q497Do
World Health Organization(2021a, May 13).Coronavirus disease (COVID-19). https://www.who.int/news-room/questions-and-answers/item/coronavirus-disease-covid-19
World Health Organization(2021b, October 6). A clinical case definition of post COVID-19 condition by a Delphi consensus, 6 October 2021. https://www.who.int/publications/i/item/WHO-2019-nCoV-Post_COVID-19_condition-Clinical_case_definition-2021.1
World Health Organization(2022, March 6). Mental Health and COVID-19: Early evidence of the pandemic’s impact: Scientific brief, 2 March 2022. https://www.who.int/publications/i/item/WHO-2019-nCoV-Sci_Brief-Mental_health-2022.1
World Health Organization(2023, February 24). Tracking SARS-CoV-2 variants. https://www.who.int/activities/tracking-SARS-CoV-2-variants
World Health Organization. (1998). A health telematics policy in support of WHO’s Health-for-all strategy for global health development : report of the WHO Group Consultation on Health Telematics, 11-16 December, Geneva, 1997. https://apps.who.int/iris/handle/10665/63857
World Health Organization. (2010). Telemedicine: opportunities and developments in Member States: report on the second global survey on eHealth. https://apps.who.int/iris/handle/10665/44497
Zhang, X., Liu, S., Wang, L., Zhang, Y., & Wang, J. (2019). Mobile health service adoption in China. Online Information Review, 44(1), 1–23. https://doi.org/10.1108/oir-11-2016-0339
Zhao, Y., Ni, Q., & Zhou, R. (2018). What factors influence the mobile health service adoption? A meta-analysis and the moderating role of age. International Journal of Information Management, 43, 342–350. https://doi.org/10.1016/j.ijinfomgt.2017.08.006
Zheng, D., Luo, Q., & Ritchie, B. W. (2021). Afraid to travel after COVID-19? Self-protection, coping and resilience against pandemic ‘travel fear.’ Tourism Management, 83, 104261. https://doi.org/10.1016/j.tourman.2020.104261
Zhou, C., Hao, Y., Lan, Y., & Li, W. (2023). To introduce or not? Strategic analysis of hospital operations with telemedicine. European Journal of Operational Research, 304(1), 292–307. https://doi.org/10.1016/j.ejor.2021.12.020