[1]Kumar, M., Bhatt, V., Abhyankar, A.C., Kim, J., Kumar, A., Patil, S.H. and Yun, J.H., 2018. New insights towards strikingly improved room temperature ethanol sensing properties of p-type Ce-doped SnO2 sensors. Scientific Reports, 8(1), pp.1-12.
[2]行政院環保署, “室內空氣品質標準. ” 中華民國行政院環境保護署空字第1010106229號, (2012)
[3]Özgür, Ü., Alivov, Y.I., Liu, C., Teke, A., Reshchikov, M., Doğan, S., Avrutin, V.C.S.J., Cho, S.J. and Morkoç, A.H., 2005. A comprehensive review of ZnO materials and devices. Journal of Applied Physics, 98(4), p.11.
[4]Zhang, Z.Z., Wei, Z.P., Lu, Y.M., Shen, D.Z., Yao, B., Li, B.H., Zhao, D.X., Zhang, J.Y., Fan, X.W. and Tang, Z.K., 2007. p-Type ZnO on sapphire by using O2–N2 co-activating and fabrication of ZnO LED. Journal of Crystal Growth, 301, pp.362-365.
[5]Ryu, Y., Lee, T.S., Lubguban, J.A., White, H.W., Kim, B.J., Park, Y.S. and Youn, C.J., 2006. Next generation of oxide photonic devices: ZnO-based ultraviolet light emitting diodes. Applied Physics Letters, 88(24), p.241108.
[6]Fortunato, E., Pimentel, A., Pereira, L., Goncalves, A., Lavareda, G., Aguas, H., Ferreira, I., Carvalho, C.N. and Martins, R., 2004. High field-effect mobility zinc oxide thin film transistors produced at room temperature. Journal of Non-Crystalline Solids, 338, pp.806-809.
[7]Masuda, S., Kitamura, K., Okumura, Y., Miyatake, S., Tabata, H. and Kawai, T., 2003. Transparent thin film transistors using ZnO as an active channel layer and their electrical properties. Journal of Applied Physics, 93(3), pp.1624-1630.
[8]Carcia, P.F., McLean, R.S., Reilly, M.H. and Nunes Jr, G., 2003. Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering. Applied Physics Letters, 82(7), pp.1117-1119.
[9]Hoffman, R.L., 2004. ZnO-channel thin-film transistors: Channel mobility. Journal of Applied Physics, 95(10), pp.5813-5819.
[10]Fortunato, E.M., Barquinha, P.M., Pimentel, A.C., Gonçalves, A.M., Marques, A.J., Martins, R.F. and Pereira, L.M., 2004. Wide-bandgap high-mobility ZnO thin-film transistors produced at room temperature. Applied Physics Letters, 85(13), pp.2541-2543.
[11]Lu, M.P., Song, J., Lu, M.Y., Chen, M.T., Gao, Y., Chen, L.J. and Wang, Z.L., 2009. Piezoelectric nanogenerator using p-type ZnO nanowire arrays. Nano letters, 9(3), pp.1223-1227.
[12]Qi, J., Zhang, H., Lu, S., Li, X., Xu, M. and Zhang, Y., 2015. High performance indium-doped ZnO gas sensor. Journal of Nanomaterials, 2015.
[13]Hassan, M.M., Khan, W., Mishra, P., Islam, S.S. and Naqvi, A.H., 2017. Enhancement in alcohol vapor sensitivity of Cr doped ZnO gas sensor. Materials Research Bulletin, 93, pp.391-400.
[14]Wang, L., Kang, Y., Liu, X., Zhang, S., Huang, W. and Wang, S., 2012. ZnO nanorod gas sensor for ethanol detection. Sensors and Actuators B: Chemical, 162(1), pp.237-243.
[15]Wei, F., Zhang, H., Nguyen, M., Ying, M., Gao, R. and Jiao, Z., 2015. Template-free synthesis of flower-like SnO2 hierarchical nanostructures with improved gas sensing performance. Sensors and Actuators B: Chemical, 215, pp.15-23.
[16]Reaney, I.M., Colla, E.L. and Setter, N., 1994. Dielectric and structural characteristics of Ba-and Sr-based complex perovskites as a function of tolerance factor. Japanese Journal of Applied Physics, 33(7R), p.3984.
[17]Singh, M., Yadav, B.C., Ranjan, A., Kaur, M. and Gupta, S.K., 2017. Synthesis and characterization of perovskite barium titanate thin film and its application as LPG sensor. Sensors and actuators b: chemical, 241, pp.1170-1178.
[18]Taylor, G.I., 1966. Studies in electrohydrodynamics. I. The circulation produced in a drop by an electric field. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 291(1425), pp.159-166.
[19]Taylor, G.I., 1969. Electrically driven jets. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 313(1515), pp.453-475.
[20]Melcher, J.R. and Taylor, G.I., 1969. Electrohydrodynamics: a review of the role of interfacial shear stresses. Annual Review of fluid Mechanics, 1(1), pp.111-146.
[21]Taylor, G.I., 1969. Electrically driven jets. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 313(1515), pp.453-475.
[22]Gupta, P., Elkins, C., Long, T.E. and Wilkes, G.L., 2005. Electrospinning of linear homopolymers of poly (methyl methacrylate): exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent. Polymer, 46(13), pp.4799-4810.
[23]Fukushima, S., Karube, Y. and Kawakami, H., 2010. Preparation of ultrafine uniform electrospun polyimide nanofiber. Polymer Journal, 42(6), pp.514-518.
[24]Yamazoe, N., 2005. Toward innovations of gas sensor technology. Sensors and Actuators B: Chemical, 108(1-2), pp.2-14.
[25]Gupta, P., Elkins, C., Long, T.E. and Wilkes, G.L., 2005. Electrospinning of linear homopolymers of poly (methyl methacrylate): exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent. Polymer, 46(13), pp.4799-4810.
[26]林振裕、王立群、張章平、葛明德, J. Chin. Colloid & Interface Soc., 31 (2009), p. 26-38.
[27]Yamazoe, N., Fuchigami, J., Kishikawa, M. and Seiyama, T., 1979. Interactions of tin oxide surface with O2, H2O and H2. Surface Science, 86, pp.335-344.
[28]Tsai, C.J., Chen, M.L., Ye, A.D. and Mao, I.F., 2012. Single SnO2 gas sensor as a practical tool for evaluating the efficiency of odor control engineering at food waste composting plants. Sensors and Actuators B: Chemical, 169, pp.248-254.
[29]Zhang, W., Yang, B., Liu, J., Chen, X., Wang, X. and Yang, C., 2017. Highly sensitive and low operating temperature SnO2 gas sensor doped by Cu and Zn two elements. Sensors and Actuators B: Chemical, 243, pp.982-989.
[30]Sklorz, A., Janßen, S. and Lang, W., 2013. Application of a miniaturised packed gas chromatography column and a SnO2 gas detector for analysis of low molecular weight hydrocarbons with focus on ethylene detection. Sensors and Actuators B: Chemical, 180, pp.43-49.
[31]Lackner, E., Krainer, J., Wimmer-Teubenbacher, R., Sosada, F., Deluca, M., Gspan, C., & Köck, A. (2017). Carbon monoxide detection with CMOS integrated thin film SnO2 gas sensor. Materials Today: Proceedings, 4(7), 7128-7131.
[32]Zhang, M., Xue, T., Xu, S., Li, Z., Yan, Y. and Huang, Y., 2017. Adverse effect of substrate surface impurities on O2 sensing properties of TiO2 gas sensor operating at high temperature. Ceramics International, 43(7), pp.5842-5846.
[33]Ruiz, A.M., Sakai, G., Cornet, A., Shimanoe, K., Morante, J.R. and Yamazoe, N., 2003. Cr-doped TiO2 gas sensor for exhaust NO2 monitoring. Sensors and Actuators B: Chemical, 93(1-3), pp.509-518.
[34]Nasirian, S. and Moghaddam, H.M., 2015. Polyaniline assisted by TiO2: SnO2 nanoparticles as a hydrogen gas sensor at environmental conditions. Applied Surface Science, 328, pp.395-404.
[35]Nikfarjam, A. and Salehifar, N., 2015. Improvement in gas-sensing properties of TiO2 nanofiber sensor by UV irradiation. Sensors and Actuators B: Chemical, 211, pp.146-156.
[36]Perillo, P.M. and Rodríguez, D.F., 2016. Low temperature trimethylamine flexible gas sensor based on TiO2 membrane nanotubes. Journal of Alloys and Compounds, 657, pp.765-769.
[37]Baran, E. and Yazıcı, B., 2017. Preparation and characterization of poly (3-hexylthiophene) sensitized Ag doped TiO2 nanotubes and its carrier density under solar light illumination. Thin Solid Films, 627, pp.82-93.
[38]Righettoni, M., Tricoli, A., Gass, S., Schmid, A., Amann, A. and Pratsinis, S.E., 2012. Breath acetone monitoring by portable Si: WO3 gas sensors. Analytica chimica acta, 738, pp.69-75.
[39]Weisz, P.B., 1953. Effects of electronic charge transfer between adsorbate and solid on chemisorption and catalysis. The Journal of Chemical Physics, 21(9), pp.1531-1538.
[40]Barsan, N., Koziej, D. and Weimar, U., 2007. Metal oxide-based gas sensor research: How to?. Sensors and Actuators B: Chemical, 121(1), pp.18-35.
[41]Heiland, G., 1981. Homogeneous semiconducting gas sensors. Sensors and Actuators, 2, pp.343-361.
[42]Leach, C., Ling, Z. and Freer, R., 2000. Direct observation of the barrier structure in a heterojunction gas sensor using conductive mode microscopy. Scripta Materialia, 42(11), pp.1083-1088.
[43]莊達仁, “VLSI 製造技術. ” 高立圖書有限公司, 台灣, (2002).
[44]Sze, S.M., Physics of Semiconductor Devices, Wiley, New York 1981. C. A. Mead, Analog VLSI and Neural Systems (Addison-Wesley, Reading, MA, 1989), p.36.
[45]Capasso, F. and Margaritondo, G., 1987. Heterojunction band discontinuities: physics and device applications (No. BOOK). North-Holland.
[46]Gao, C., Lin, Z.D., Li, N., Fu, P. and Wang, X.H., 2015. Preparation and H2S Gas-Sensing Performances of Coral-Like SnO2–CuO Nanocomposite. Acta Metallurgica Sinica (English Letters), 28(9), pp.1190-1197.
[47]Xie, H., Wang, K., Yao, Y., Zhao, Y. and Wang, X., 2013. Pechini Sol-Gel Preparation and Photocatalytic Properties of SrBi4Ti4O15.
[48]Wang, J., Zhang, Y., Guo, W., Hou, X., Liang, T., Deng, C. and Xu, J., 2013. Electrochemical behavior of La0. 8Sr0. 2FeO3 electrode with different porosities under cathodic and anodic polarization. Ceramics International, 39(5), pp.5263-5270.
[49]Williams, D.E., 1999. Semiconducting oxides as gas-sensitive resistors. Sensors and Actuators B: Chemical, 57(1-3), pp.1-16.
[50]Fleischer, M. and Meixner, H., 1997. Fast gas sensors based on metal oxides which are stable at high temperatures. Sensors and Actuators B: Chemical, 43(1-3), pp.1-10.
[51]Guo, J., Zhang, J., Zhu, M., Ju, D., Xu, H. and Cao, B., 2014. High-performance gas sensor based on ZnO nanowires functionalized by Au nanoparticles. Sensors and Actuators B: Chemical, 199, pp.339-345.
[52]Xiangdong, L., Hesheng, S. and Yusheng, S., 1991. The Development of ZnO Series Ceramic Semiconductor Gas Sensors [J]. Journal of Transducer Technology, 3.
[53]Morkoç, H. and Özgür, Ü., 2008. Zinc oxide: fundamentals, materials and device technology. John Wiley & Sons.
[54]Pan, S. and Mei, S., 1993. Sol–gel preparation of ZnO gas-sensing film. J. Sens. Trans. Technol., 3, pp.18-20.
[55]Wei, S., Wang, S., Zhang, Y. and Zhou, M., 2014. Different morphologies of ZnO and their ethanol sensing property. Sensors and Actuators B: chemical, 192, pp.480-487.
[56]Fergus, J.W., 2007. Perovskite oxides for semiconductor-based gas sensors. Sensors and Actuators B: Chemical, 123(2), pp.1169-1179.
[57]Bie, L.J., Yan, X.N., Yin, J., Duan, Y.Q. and Yuan, Z.H., 2007. Nanopillar ZnO gas sensor for hydrogen and ethanol. Sensors and Actuators B: Chemical, 126(2), pp.604-608.
[58]黃伯融, “以靜電紡絲製備氧化鋅奈米線於氣體感測研究. ” 國立成功大學碩士論文, (2008).[59]Ghafari, E., Feng, Y., Liu, Y., Ferguson, I. and Lu, N., 2017. Investigating process-structure relations of ZnO nanofiber via electrospinning method. Composites Part B: Engineering, 116, pp.40-45
[60]Xu, J., Han, J., Zhang, Y., Sun, Y.A. and Xie, B., 2008. Studies on alcohol sensing mechanism of ZnO based gas sensors. Sensors and Actuators B: Chemical, 132(1), pp.334-339.
[61]Choi, J.D. and Choi, G.M., 2000. Electrical and CO gas sensing properties of layered ZnO–CuO sensor. Sensors and actuators B: Chemical, 69(1-2), pp.120-126.
[62]Shendage, S.S., Patil, V.L., Vanalakar, S.A., Patil, S.P., Harale, N.S., Bhosale, J.L., Kim, J.H. and Patil, P.S., 2017. Sensitive and selective NO2 gas sensor based on WO3 nanoplates. Sensors and Actuators B: Chemical, 240, pp.426-433.
[63]Anand, K., Kaur, J., Singh, R.C. and Thangaraj, R., 2017. Preparation and characterization of Ag-doped In2O3 nanoparticles gas sensor. Chemical Physics Letters, 682, pp.140-146.
[64]Gu, F., Nie, R., Han, D. and Wang, Z., 2015. In2O3–graphene nanocomposite based gas sensor for selective detection of NO2 at room temperature. Sensors and Actuators B: Chemical, 219, pp.94-99.
[65]Li, F., Zhang, T., Gao, X., Wang, R. and Li, B., 2017. Coaxial electrospinning heterojunction SnO2/Au-doped In2O3 core-shell nanofibers for acetone gas sensor. Sensors and Actuators B: Chemical, 252, pp.822-830.
[66]Hu, J., Sun, Y., Xue, Y., Zhang, M., Li, P., Lian, K., Zhuiykov, S., Zhang, W. and Chen, Y., 2018. Highly sensitive and ultra-fast gas sensor based on CeO2-loaded In2O3 hollow spheres for ppb-level hydrogen detection. Sensors and Actuators B: Chemical, 257, pp.124-135.
[67]Zhang, Y.B., Yin, J., Li, L., Zhang, L.X. and Bie, L.J., 2014. Enhanced ethanol gas-sensing properties of flower-like p-CuO/n-ZnO heterojunction nanorods. Sensors and Actuators B: Chemical, 202, pp.500-507.
[68]Shaver, P.J., 1967. Activated tungsten oxide gas detectors. Applied Physics Letters, 11(8), pp.255-257.
[69]Katoch, A., Choi, S.W. and Kim, S.S., 2015. Nanograins in electrospun oxide nanofibers. Metals and Materials International, 21(2), pp.213-221.
[70]Kim, J. and Yong, K., 2011. Mechanism study of ZnO nanorod-bundle sensors for H2S gas sensing. The Journal of Physical Chemistry C, 115(15), pp.7218-7224.
[71]Vuong, N.M., Chinh, N.D., Huy, B.T. and Lee, Y.I., 2016. CuO-decorated ZnO hierarchical nanostructures as efficient and established sensing materials for H2S gas sensors. Scientific reports, 6(1), pp.1-13.
[72]楊士弘. “金屬氧化物奈米結構應用於氣體感測器.” 國立高雄應用科技大學機械工程系碩士班, 高雄市, 2015[73]吳佩岑. “二氧化鈦奈米管於濕度與氣體感測器之研究.” 國立高雄應用科技大學機械工程系碩士班, 高雄市, 2014