[1]D. L. Schodek, P. Ferreira, and M. F. Ashby. Nanomaterials nanotechnologies and design an introduction for engineers and architects, Butterworth-Heinemann. (2009).
[2]J. Guo, J. Zhang, M. Zhu, D. Ju, H. Xu, and B. Cao. High-performance gas sensor based on ZnO nanowires functionalized by Au nanoparticles. Sensors and Actuators B: Chemical. 199 (2014) 339-345.
[3]P. H. Wagh, and D. D. Pagar. Investigation of mechanical and tribological behavior of composite material filled with black epoxy resin and aluminium tri-hydroxide using reinforcement of glass fiber. In AIP Conference Proceedings. 1 (2018) 020025.
[4]L. Zhang, and T. J. Webster. Nanotechnology and nanomaterials: promises for improved tissue regeneration. Nano Today. 4 (2009) 66-80.
[5]P. Couvreur, and C. Vauthier. Nanotechnology: intelligent design to treat complex disease. Pharmaceutical Research. 23 (2006) 1417-1450.
[6] Rokoš, Ondřej, R. H. Peerlings, and Z. Jan. eXtended variational quasicontinuum methodology for lattice networks with damage and crack propagation. Computer Methods in Applied Mechanics and Engineering. 320 (2017) 769-792.
[7] E. B. Tadmor, M. Ortiz and R. Phillips. Quasicontinuum analysis of defects in solids. Phil. Mag. A. 73 (1996) 1529-1563.
[8] E. B. Tadmor, and R. E. Miller. The theory and implementation of the quasicontinuum method. Handbook of Materials Modeling. Springer, Dordrecht. (2005) 663-682.
[9] W. Yu, Z. Wang, S. Shen. Edge dislocations interacting with a ∑11 symmetrical grain boundary in copper upon mixed loading: A quasicontinuum method study. Computational Material Science. 137 (2017) 162-170.
[10] T. Xu, J. Fan, R. Stewart, X. Zeng, and A. Yao. Quasicontinuum simulation of brittle cracking in single‐crystal material. Crystal Research and Technology. 52 (2017) 1600247.
[11] C. Fang, X. Meng, Y. Xie, and B. Zhao. Quasicontinuum investigation of the feedback effects on friction behavior of an abrasive particle over a single crystal aluminum substrate. Tribology International. 98 (2016) 48-58.
[12] O. Alizadeh, G. Tolooei Eshlaghi, and S. Mohammadi. Nanoindentation simulation of coated aluminum thin film using quasicontinuum method. Computational Materials Science. 111 (2016) 12-22.
[13] V. Péron-Lührs, F. Sansoz, and Ludovic Noels. Quasicontinuum study of the shear behavior of defective tilt grain boundaries in Cu. Acta Materialia. 64 (2014) 419-428.
[14] X. H. Li, M. Luskin, C. Ortner, and A. V. Shapeev. Theory-based benchmarking of the blended force-based quasicontinuum method. Computer Methods in Applied Mechanics and Engineering. 268 (2014) 763-781.
[15] J. Mei, and Y. Ni. The study of anisotropic behavior of nano-adhesive contact by multiscale simulation. Thin Solid Films. 566 (2014) 45-53.
[16] W. G. Jiang, S. Xu, and Z. W. Wang. Effect of initial contact location on multiasperity nanocontact:Quasicontinuum simulation. Nano (2014).
[17] H. M. Pen, S. B. Qing, and C. L. Ying. Quasicontinuum simulation of effect of crystal orientation and cutting direction of on nanometric cutting of single crystal copper. Key Engineering Materials. 431 (2010)154-157.
[18] P. J. Blau. Friction science and technology: from concepts to applications. CRC press. (2008).
[19]郭正次,朝春光,奈米結構材料科學,台灣: 全華圖書股份有限公司. (2004).
[20] J. J. Wang, N. R. Tao, and K. Lu. Revealing the deformation mechanisms of nanograins in gradient nanostructured Cu and CuAl alloys under tension. Acta Materialia. 180 (2019) 231-242.
[21] Y. X. Ye, C. Z. Liu, H. Wang, and T. G. Nieh. Friction and wear behavior of a single-phase equiatomic TiZrHfNb high-entropy alloy studied using a nanoscratch technique. Acta Materialia. 147 (2018) 78-89.
[22] Y. Geng, Y. Yan,Y. He, and Z. Hu. Investigation on friction behavior and processing depth prediction of polymer in nanoscale using AFM probe-based nanoscratching method. Tribology International. 114 (2017) 33-41.
[23] B. Lin, S. Y. Yu, and S. X. Wang. An experimental study on molecular dynamics simulation in nanometer grinding. Journal of Materials Processing Technology. 138 (2003) 484-488.
[24] B. Meng, D. Yuan, and S. Xu. Study on strain rate and heat effect on the removal mechanism of SiC during nano-scratching process by molecular dynamics simulation. International Journal of Mechanical Sciences. 151 (2019) 724-732.
[25] Y. Liu, B. Li, and L. Kong. A molecular dynamics investigation into nanoscale scratching mechanism of polycrystalline silicon carbide. Computational Materials Science. 148 (2018) 76-86.
[26] A. Sharma, D. Datta, and R. Balasubramaniam. Molecular dynamics simulation to investigate the orientation effects on nanoscale cutting of single crystal copper. Computational Materials Science. 153 (2018) 241-250.
[27] M. R. Price, and B. Raeymaekers. Quantifying adhesion of ultra-thin multi-layer DLC coatings to Ni and Si substrates using shear, tension, and nanoscratch molecular dynamics simulations. Acta Materialia. 141 (2017) 317-326.
[28] J. Li, Q. Fang, Y. Liu, and L. Zhang. Scratching of copper with rough surfaces conducted by diamond tip simulated using molecular dynamics. The International Journal of Advanced Manufacturing Technology. 77 (2014) 1057-1070.
[29] R. Balasubramaniam , R. V. Sarepaka, and S. Subbiah. Diamond turn machining: Theory and practice. CRC Press. (2017).
[30] P. H. Wagh, D. D. Pagar. Investigation of mechanical and tribological behavior of composite material filled with black epoxy resin and aluminium tri-hydroxide using reinforcement of glass fiber. AIP Conference Proceedings. 1 (2018) 020025.
[31] S. Jiao, W. Tu, P. Zhang, W. Zhang, L. Qin, Z. Sun, and J. Chen. Atomistic insights into the prismatic dislocation loop on Al (1 0 0) during nanoindentation investigated by molecular dynamics. Computational Materials Science. 143 (2018) 384-390.
[32] T. H. Fang, W. J. Chang, D. J. Yu, and C. C. Huang. Microscopic properties of a nanocrystal aluminum thin film during nanoimprint using quasi-continuous method. Thin Solid Films. 612 (2016) 237-242.
[33] J. Mei, Y. NI. The study of anisotropic behavior of nano-adhesive contact by multiscale simulation. Thin Solid Films. 566 (2014) 45-53.
[34] W. G. Jiang, S. Xu, Z. W. Wang. Effect of initial contact location on multiasperity nanocontact: Quasicontinuum simulation. Nano. 9 (2014) 1450004.
[35] N. Moharrami, and S. J. Bull. A comparison of nanoindentation pile-up in bulk materials and thin films. Thin Solid Films. 572 (2014) 189-199.
[36] V. B. Shenoy, R. Miller, E. B. Tadmor, D. Rodney, R. Phillips, and M. Ortiz. An adaptive finite element approach to atomic-scale mechanics—the quasicontinuum method. Journal of the Mechanics and Physics of Solids. 47 (1999) 611-642.
[37] 林英志,多尺度法模擬金屬奈米線接合與機械效應,國立高雄科技大學機械工程系,碩士論文,(2017)。[38] 陳重熺,準連續法分析鋁之研磨與壓印特性,國立高雄科技大學機械工程系,碩士論文,(2017)。[39] 蘇玟丞,準連續法研究異質界面之機械與變形特性,國立高雄科技大學機械工程系,碩士論文,(2019)。[40] Zienkiewicz, O. Cecil. The finite element method. Vol. 3. London: McGraw-hill. (1977).
[41] E. Weinan, and P. Ming. Cauchy–Born rule and the stability of crystalline solids: static problems. Archive for Rational Mechanics and Analysis. 183 (2007) 241-297
[42] M. S. Daw and M. I. Baskes. Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Physical Review B. 29 (1984) 6443-6453.
[43] R. A. Johnson. Alloy models with the embedded-atom method. Physical Review B. 39 (1989) 12554-12559.
[44] Z. S. Basinski, M. S. Duesbery and R. Taylor, Influence of Shear Stress on Screw Dislocations in a Model Sodium Lattice. American Journal of Physics. 49 (1971) 2160-2180.
[45] R. E. Miller, and E. B. Tadmor. The quasicontinuum method: Overview, applications and current directions. Journal of Computer-Aided Materials Design. 9 (2002) 203-239.
[46] R. Miller, Tadmor, E. B. Tadmor, R. Phillips, and M. Ortiz. Quasicontinuum simulation of fracture at the atomic scale. Modelling and Simulation in Materials Science and Engineering. 6 (1998) 607.
[47] O. C. Zienkiewicz, and J. Z. Zhu. A simple error estimator and adaptive procedure for practical engineerng analysis. International Journal for Numerical Methods in Engineering. 24 (1987) 337-357.
[48] F. Sansoz, and J. F. Molinari. Mechanical behavior of Σ tilt grain boundaries in nanoscale Cu andAl: A quasicontinuum study. Acta Materialia. 53 (2005) 1931-1944.
[49] Y. Liu, D. Bufford, H. Wang, C. Sun, and X. Zhang. Mechanical properties of highly textured Cu/Ni multilayers. Acta Materialia. 59 (2011) 1924-1933.
[50] L. Qiuqi, and L. Jiang. A multiscale virtual element method for elliptic problems in heterogeneous porous media. Journal of Computational Physics. 388 (2019) 394-415.
[51] Q. Huang, Z. Kuang, H. Hu, and M. Potier-Ferry. Multiscale analysis of membrane instability by using the Arlequin method. International Journal of Solids and Structures. 162 (2019) 60-75.
[52] B. D. Hachmi, and J. Olivier. On the use of XFEM within the Arlequin framework for the simulation of crack propagation. Computer Methods in Applied Mechanics and Engineering. 199 (2010) 1403-1414.
[53] Z. Yang, Y. Sun, Y. Liu, and Q. Ma. A second-order multiscale approach for viscoelastic analysis of statistically inhomogeneous materials. Composite Structures. 220 (2019) 550-565.
[54] H. Zhao, J. Liu, X. Yin, Y. Wang, and D. Huang. A multiscale prediction model and simulation for autogenous shrinkage deformation of early-age cementitious materials. Construction and Building Materials. 215 (2019): 482-493.
[55] C. Fang, and X. Yang. Study of nanocontact and incipient nanoscratch process using the quasicontinuum method. Materials Science and Engineering: A. 600 (2014) 221-230.
[56] E. S. Gadelmawla, M. M. Koura, T. M. A. Maksoud, I. M. Elewa, and H. H. Soliman. Roughness parameters. Journal of Materials Processing Technology. 123 (2002) 133-145.
[57] C. B. Cui, and H. G. Beom. Fracture of nanoscale Cu/Ag bimaterials with an interface crack. Computational Materials Science. 118 (2016) 133-138.
[58] V. Yamakov, E. Saether, D. R. Phillips, and E. H. Glaessgen. Molecular-dynamics simulation-based cohesive zone representation of intergranular fracture processes in aluminum. Journal of the Mechanics and Physics of Solids. 54 (2006) 1899-1928.
[59] G. P. Potirniche, M. F. Horstemeyer, B. Jelinek, and G. J. Wagner. Fatigue damage in nickel and copper single crystals at nanoscale. International Journal of Fatigue. 27 (2005) 1179-1185.
[60] D. Van, C. Walt, J. J. Terblans, and H. C. Swart. Molecular dynamics study of the temperature dependence and surface orientation dependence of the calculated vacancy formation energies of Al, Ni, Cu, Pd, Ag, and Pt. Computational Materials Science. 83 (2014) 70-77.
[61] A. Neogi, and M. Nilanjan. Shock induced deformation response of single crystal copper: Effect of crystallographic orientation. Computational Materials Science. 135 (2017) 141-151.
[62] Y. Zhang, S. Jiang, X. Zhu, and Y. Zhao. A molecular dynamics study of intercrystalline crack propagation in nano-nickel bicrystal films with (0 1 0) twist boundary. Engineering Fracture Mechanics. 168 (2016) 147-159.
[63] V. Dupont, and F. Sansoz. Quasicontinuum study of incipient plasticity under nanoscale contact in nanocrystalline aluminum. Acta Materialia. 56 (2008) 6013-6026.
[64] J. P. Wang, Z. F. Yue, Z. X. Wen, D. X. Zhang, and C. Y. Liu. Orientation effects on the tensile properties of single crystal nickel with nanovoid: Atomistic simulation. Computational Materials Science. 132 (2017) 116-124.
[65] X. Y. Li, F. Wu, Y. F. Wu, and W. Q. Chen. Indentation on two-dimensional hexagonal quasicrystals. Mechanics of Materials. 76 (2014) 121-136.
[66] T. S. Gates, G. M. Odegard, S. J. V. Frankland, and T. C. Clancy. Computational materials: multi-scale modeling and simulation of nanostructured materials. Composites Science and Technology. 65 (2005) 2416-2434.
[67] J. Jamari, and D. J. Schipper. Deterministic repeated contact of rough surfaces. Wear 264 (2008) 349-358.
[68] Q. Peng, X. Zhang, and G. Lu. Quantum mechanical simulations of nanoindentation of Al thin film. Computational Materials Science. 47 (2010) 769-774.
[69] D. Shan, L. Yuan, and B. Guo. Multiscale simulation of surface step effects on nanoindentation. Materials Science and Engineering: A. 412 (2005) 264-270.
[70] J. Jin, S. A. Shevlin, and Z. X. Guo. Multiscale simulation of onset plasticity during nanoindentation of Al (0 0 1) surface. Acta Materialia. 56 (2008) 4358-4368.
[71] W. G . Jiang, Z. W. Wang, and J. W. Li. Verification of the applicability of classical contact theories for nanoscale contact problems using multiscale simulation. Computational Materials Science. 60 (2012) 186-193.
[72] W. G. Jiang, J. J. Su, and X. Q. Feng. Effect of surface roughness on nanoindentation test of thin films. Engineering Fracture Mechanics. 75 (2008) 4965-4972.
[73] T. H. Fang, W. J. Chang, D. J. Yu, and C. C. Huang. Microscopic properties of a nanocrystal aluminum thin film during nanoimprint using quasi-continuous method. Thin Solid Films. 612 (2016) 237-242.
[74] C. T. Wang, S. R. Jian, J. S. C. Jang, Y. S. Lai, and P. F. Yang. Multiscale simulation of nanoindentation on Ni (1 0 0) thin film. Applied Surface Science. 255 (2008) 3240-3250.
[75] H. Lu, J. Li, and Y. Ni. Position effect of cylindrical indenter on nanoindentation into Cu thin film by multiscale analysis. Computational materials science. 50 (2011) 2987-2992.
[76] A. Zhu, D. He, R. He, and C. Zou. Nanoindentation simulation on single crystal copper by quasi-continuum method. Materials Science and Engineering: A. 674 (2016) 76-81.
[77] H. R. Lashgari, C. Tang, D. Chu, and S. Li. Molecular dynamics simulation of cyclic indentation in Fe-based amorphous alloy. Computational Materials Science. 143 (2018) 473-479.
[78] D. Zhao, H. Zhao, B. Zhu, and S. Wang. Investigation on hardening behavior of metallic glass under cyclic indentation loading via molecular dynamics simulation. Applied Surface Science. 416 (2017) 14-23.
[79] B. Shiari, and R. E. Miller. Multiscale modeling of ductile crystals at the nanoscale subjected to cyclic indentation. Acta Materialia. 56 (2008) 2799-2809.
[80] J. M. Collin, G. Mauvoisin, P. Pilvin, and R. E Abdi. Use of spherical indentation data changes to materials characterization based on a new multiple cyclic loading protocol. Materials Science and Engineering: A. 488 (2008) 608-622.
[81] L. Zhang, H. Zhao, W. Guo, Z. Ma, and X. Wang. Quasicontinuum analysis of the effect of tool geometry on nanometric cutting of single crystal copper. Optik. 125 (2014) 682-687.
[82] X. Guo, Y. Gou, Z. Dong, S. Yuan, M. Li, W. Du, and R. Kang. Study on subsurface layer of nano-cutting single crystal tungsten in different crystal orientations. Applied Surface Science. (2020) 146608.
[83] H. M. Pen, Y. C. Liang, X. C. Luo, Q. S. Bai, S. Goel, and J. M. Ritchie. Multiscale simulation of nanometric cutting of single crystal copper and its experimental validation. Computational Materials Science. 50 (2011) 3431-3441.