[1] 內政部建築研究所,「綠空調實踐與應用」,p.1,2008。
[2] 楊昇達,空調冰水主機系統節能運轉之研究,國立臺灣科技大學,碩士論文,2015年。[3] 吳書凡,冰水主機節能效益分析,國立高雄科技大學,碩士論文,2022年。[4] 陳彥勳,蒸發冷卻模組應用R-410A分離式空調機之空氣側性能分析,國立高雄科技大學,碩士論文,2022年。[5] 黃文男,醫學中心綜合實驗大樓空調能源管理系統,國立高雄科技大學,碩士論文,2015年。
[6] 林鈺倯,基於Modbus之SCADA系統,國立雲林科技大學,碩士論文,2021年。[7] 邱景鴻,基於BiLSTM模型的音樂類別分析,逢甲大學,碩士論文,2022年。[8] S. Wang, Y. Sun, J. Wang, D. Hou, L. Zhang, Y. Zhou, “Very Short-term Prediction for Wind Power Based on BiLSTM-Attention, ” 2021 IEEE Sustainable Power and Energy Conference (iSPEC), Nanjing, China, pp. 292-296, 2021.
[9] S. Siami-Namini, N. Tavakoli, A. S. Namin, “The Performance of LSTM and BiLSTM in Forecasting Time Series, ” 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, pp. 3285-3292, 2019.
[10] Hamidreza Jahangir, Hanif Tayarani, Saleh Sadeghi Gougheri, Masoud Aliakbar Golkar, Ali Ahmadian, Ali Elkamel, “Deep Learning-Based Forecasting Approach in Smart Grids With Microclustering and Bidirectional LSTM Network,” in IEEE Transactions on Industrial Electronics, vol. 68, pp. 8298-8309, 2021.
[11] 周勁言,水冷式冰水主機維護保養週期評估之研究,國立臺北科技大學,碩士論文,2022年。[12] 陳志鵬,以熱力學第二定律效率探討R-134a冷媒之運轉特性,國立屏東科技大學,碩士論文,2001年。[13] 蔡奇芝,以大數據分析達成冰水主機系統節能目的,國立清華大學,碩士論文,2020年。[14] 壓縮機工作原理動態圖,2017年每日頭條(https://kknews.cc/zhtw/news/nm8xg68.html)
[15] 台灣日立江森自控股份有限公司(https://www.jci-hitachi.tw/products/products_level3.aspx?545A5F548C5AD91F)
[16] TRANE Taiwan (https://www.trane.com/commercial/asia-pacific/tw/zh_ tw.html)
[17] 金日實業股份有限公司 (https://www.kingsunct.com.tw/tw)
[18] 洪國安,水冷式冰水主機汰換成分散式氣冷冰水主機之耗能分析,國立勤益科技大學,碩士論文,2015年。[19] 日立離心式冰水主機 (https://www.everbrite.com.tw/catalog-detail/chiller_2/)
[20] 林鈺倯,基於Modbus之SCADA系統,國立雲林科技大學,碩士論文,2021年。
[21] 張光裕,整合Modbus與Websocket協定之聯網醫療資料採集嵌入式系統研製,國立中央大學,碩士論文,2020年。[22] 李明鴻,具BACnet通訊協定之DDC空調終端控制器,國立臺灣大學,碩士論文,2000年。[23] EasyIO-30P使用說明書(https://www.controlstraders.com/assets/brochure s/30P-SF45.pdf)
[24] ChatGPT (https://openai.com/blog/chatgpt)
[25] Y. J. Chew, S. Y. Ooi, K.-S. Wong, Y. H. Pang and N. Lee, “Adoption of IP truncation in a privacy-based decision tree pruning design: A case study in network intrusion detection system, ” Electronics, vol. 11, no. 5, pp. 805, Mar. 2022.
[26] R. Jin, L. Lu, J. Lee, and A. Usman, “Multi-representational convolutional neural networks for text classification,” Comput Intell, vol. 35, no. 3, 2019.
[27] A. Ponmalar and V. Dhanakoti, “An intrusion detection approach using ensemble support vector machine based chaos game optimization algorithm in big data platform”, Appl. Soft Comput., vol. 116, Feb. 2022.
[28] J. Du, K. Yang, Y. Hu and L. Jiang, “NIDS-CNNLSTM: Network Intrusion Detection Classification Model Based on Deep Learning, ” in IEEE Access, vol. 11, pp. 24808-24821, 2023.
[29] Z. Guo and M. Yang, “TFFC-RNN:A New RNN Based Approach for Bearing and Misalignment Compound Fault, ” 2022 International Power Electronics Conference (IPEC-Himeji 2022- ECCE Asia), Himeji, Japan, pp. 2504-2509, 2022.
[30] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Comput, 1997.
[31] K. Moharm, M. Eltahan and E. Elsaadany, “Wind Speed Forecast using LSTM and Bi-LSTM Algorithms over Gabal El-Zayt Wind Farm, ” 2020 International Conference on Smart Grids and Energy Systems (SGES), Perth, Australia, pp. 922-927, 2020.
[32] Y. Zhou, S. Chen and D. Xiao, “Study on Natural Gas Price Forecasting Based on Prophet-GRU Nonlinear Combination, ” 2022 7th International Conference on Computational Intelligence and Applications (ICCIA), Nanjing, China, pp. 118-122, 2022.
[33] P. Bahad, P. Saxena, and R. Kamal, “Fake News Detection using Bi-directional LSTM-Recurrent Neural Network,” 2020.
[34] B. J. T and D. S. Misbha, “Detection of Attacks using Attention-based Conv-LSTM and Bi-LSTM in Industrial Internet of Things, ” 2022 International Conference on Automation, Computing and Renewable Systems (ICACRS), Pudukkottai, India, pp. 402-407, 2022.
[35] P. N. Thanh, M. -Y. Cho, C. -L. Chang and M. -J. Chen, “Short-Term Three-Phase Load Prediction With Advanced Metering Infrastructure Data in Smart Solar Microgrid Based Convolution Neural Network Bidirectional Gated Recurrent Unit, ” in IEEE Access, vol. 10, pp. 68686-68699, 2022.
[36] J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimization”, J. Mach. Learn. Res., vol. 13, no. 2, pp. 281-305, 2012.
[37] F. Hutter, H. H. Hoos and K. Leyton-Brown, “Sequential model-based optimization for general algorithm configuration, ” Proc. Int. Conf. Learn. Intell. Optim., pp. 507-523, 2011.
[38] J. Snoek, H. Larochelle and R. P. Adams, “Practical Bayesian optimization of machine learning algorithms, ” Proc. Adv. Neural Inf. Process. Syst., vol. 25, pp. 2951-2959, 2012.
[39] 鍾松融,智慧型配電饋線絕緣礙子洩漏電流監測,國立高雄科技大學,碩士論文,2022年。[40] 農業氣象觀測網監測系統 (https://agr.cwb.gov.tw/)
[41] J. Liu, Y. Zhang and Q. Zhao, “Adaptive ViBe Algorithm Based on Pearson Correlation Coefficient, ” 2019 Chinese Automation Congress (CAC), Hangzhou, China, pp. 4885-4889, 2019.
[42] A. I. Ivanov, S. E. Vyatchanin and P. S. Lozhnikov, “Comparable estimation of network power for chi-squared Pearson functional networks and Bayes hyperbolic functional networks while processing biometric data, ” 2017 International Siberian Conference on Control and Communications (SIBCON), Astana, Kazakhstan, pp. 1-3, 2017.
[43] X. Zhi, S. Yuexin, M. Jin, Z. Lujie and D. Zijian, “Research on the Pearson correlation coefficient evaluation method of analog signal in the process of unit peak load regulation, ” 2017 13th IEEE International Conference on Electronic Measurement & Instruments (ICEMI), Yangzhou, China, pp. 522-527, 2017.
[44] Y. Sai, R. Jinxia and L. Zhongxia, “Learning of Neural Networks Based on Weighted Mean Squares Error Function, ” 2009 Second International Symposium on Computational Intelligence and Design, Changsha, China, pp. 241-244, 2009.