|
[1] Mamlouk M, Manolova M. Chapter 6. Alkaline anionic exchange membrane water electrolysers. Electrochemical methods for hydrogen production. (2019). p. 180-252. [2] 楊顯整, 燃料電池應用與產業發展現況,綠機會通訊, (2012). [3] Askaripour H. Effect of operating conditions on the performance of a PEM fuel cell. Int J Heat Mass Tran 2019;144:118705. [4] Ikram, Saiqa Ahmed, Shakeel Wazed Ali, S. Agarwal, Himanshu. Chitosan-Based Polymer Electrolyte Membranes for Fuel Cell Applications, Organic-Inorganic Composite Polymer Electrolyte Membranes. (2017).Chapter 15:381-398 [5] Hammi, N.Chen, S.Dumeignil, F.Royer, S.El Kadib, A.. Chitosan as a sustainable precursor for nitrogen-containing carbon nanomaterials: synthesis and uses, (2020). [6] Bossell U. The birth of the Fuel Cell 1835–1845. Power for the 21st century 2004;1:7. [7] Andújar, J. M.Segura, F. Fuel cells: History and updating. A walk along two centuries,(2009). [8] Wee JH. Applications of proton exchange membrane fuel cell systems. Renewable and Sustainable Energy Reviews 2007;11(8):1720–38. [9] 北美智權報http://www.naipo.com/Portals/1/web_tw/Knowledge_Center/Industry_Economy/IPNC_220608_0702.htm. [10] Ferriday, T. B. Middleton, Peter Hugh, Alkaline fuel cell technology - A review, (2021). [11] Breeze, Paul, The Phosphoric Acid Fuel Cell, (2017). [12] Das, Suparna,Dutta, Kingshuk,Nessim, Gilbert Daniel,Kader, M. Abdul, Introduction to direct methanol fuel cells, (2020) . [13] Cassir, Michel,Ringuedé, Armelle,Lair, Virginie, Molten Carbonates from Fuel Cells to New Energy Devices: Molten Salts Chemistry, (2013) 355-371. [14] Ghadrdan, Maryam, Toward a systematic control design for solid oxide fuel cells, Design and Operation of Solid Oxide Fuel Cells, (2020) 217-253. [15] Breeze, Paul, The Proton Exchange Membrane Fuel Cell, Fuel Cells, (2017) 33-43. [16] S.J. Peighambardoust, S. Rowshanzamir, M. Amjadi, Review of the proton exchange membranes for fuel cell applications, International Journal of Hydrogen Energy 35(17) (2010) 9349-9384. [17] Collins, John Gourdin, Gerald Qu, Deyang, Modern Applications of Green Chemistry, Green Chemistry, (2018) 771-860. [18] Daimler AG,Howaldtswerke Deutsche Werft GmbH, Toyota, TU¨V Su¨d Industrie Service GmbH. Reproduced from Kurzweil P (2003) Brennstoffzellentechnik (Fuel Cell Technology). [19] Vijayakumar, Vijayalekshmi,Khastgir, Dipak, Polymeric composite membranes for anion exchange membrane fuel cells, Synthetic Polymeric Membranes for Advanced Water Treatment, Gas Separation, and Energy Sustainability, (2020) 365-381. [20] Huanhuan Chen, Ran Tao, Ki-Taek Bang, Minhua Shao, Yoonseob Kim, Aion Exchange Membranes for Fuel Cells:States-of-the-Art and Perspectives, Advanced Energy Materials 12(28)(2022). [21] Ren, Peng,Pei, Pucheng,Li, Yuehua,Wu, Ziyao,Chen, Dongfang,Huang, Shangwei, Degradation mechanisms of proton exchange membrane fuel cell under typical automotive operating conditions, Progress in Energy and Combustion Science 80 (2020)100859. [22] X.Z. Yuan, C. Nayoze-Coynel, N. Shaigan, D. Fisher, N.N. Zhao, N. Zamel, P. Gazdzicki, M. Ulsh, K.A. Friedrich, F. Girard, U. Groos, A review of functions, attributes, properties and measurements for the quality control of proton exchange membrane fuel cell components, Journal of Power Sources 491 (2021). [23] K. Scott, Membrane electrode assemblies for polymer electrolyte membrane fuel cells, Functional Materials for Sustainable Energy Applications, (2012) 279-311. [24] G. Zhang, Q. Wei, X. Yang, A.C. Tavares, S. Sun, RRDE experiments on noble-metal and noble-metal-free catalysts: Impact of loading on the activity and selectivity of oxygen reduction reaction in alkaline solution, Applied Catalysis B: Environmental 206 (2017) 115-126. [25] I. Cruz-Reyes, B. Trujillo-Navarrete, K. García-Tapia, M. Salazar-Gastélum, F. Paraguay-Delgado, R. Félix-Navarro, Pd/MnO2 as a bifunctional electrocatalyst for potential application in alkaline fuel cells, Fuel 279 (2020) 118470. [26] D. Bosubabu, V. Parthiban, A. Sahu, K. Ramesha, Nitrogen-doped graphene-like carbon from bio-waste as efficient low-cost electrocatalyst for fuel cell application, Bulletin of Materials Science 44(2) (2021) 1-7. [27] Álvarez-Manuel, Laura,Alegre, Cinthia,Sebastián, David,Eizaguerri, Alberto,Napal, Pedro F. Lázaro, María J. N-doped carbon xerogels from urea-resorcinol-formaldehyde as carbon matrix for Fe-N-C catalysts for oxygen reduction in fuel cells, Catalysis Today 418 (2023)114067 [28] Lin, R. Cai, X. Zeng, H. Yu, Z, Stability of High-Performance Pt-Based Catalysts for Oxygen Reduction Reactions, Adv Mater 30(17) (2018)e1705332. [29] L. Dai, Y. Xue, L. Qu, H.J. Choi, J.B. Baek, Metal-free catalysts for oxygen reduction reaction, Chem. Rev. 115 (2015) 4823–4892. [30] D. Geng, Y. Chen, Y. Chen, Y. Li, R. Li, X. Sun, S. Ye, S. Knights, High oxygenreduction activity and durability of nitrogen-doped graphene, Energy Environ. Sci.4 (2011) 760–764. [31] H.J. Zhang, Q.Z. Jiang, L. Sun, X. Yuan, Z. Shao, Z.F. Ma, 3D non-precious metalbased electrocatalysts for the oxygen reduction reaction in acid media, Int. J. Hydrog. Energy 35 (2010) 8295–8302. [32] Yaengthip, P. Siyasukh, A. Payattikul, L. Kiatsiriroat, T. Punyawudho, K., The ORR activity of nitrogen doped-reduced graphene oxide below decomposition temperature cooperated with cobalt prepared by strong electrostatic adsorption technique, Journal of Electroanalytical Chemistry 915 (2022) 116366. [33] C.K.S. Pillai, Willi Paul, Chandra P. Sharma, Chitin and chitosan polymers: Chemistry, solubility and fiber formation, Progress in Polymer Science,34(7) (2009) 641–678. [34] Rakshana Jayakumar, S. V. Nair, Tetsuya Furuike, Hiroshi Tamura, Perspectives of Chitin and Chitosan Nanofibrous Scaffolds in Tissue Engineering, Tissue Engineering (2010) . [35] Jayakumar, R., Selvamurugan, N., Nair, S.V., Tokura, S. and Tamura, H, Preparative Methods of Phosphorylated Chitin and Chitosan, International Journal of Biological Macromolecules, 43, (2008)221-225 [36] Tadashi Uragami, Tomoyuki Aketa, Satoko Gobodani, Mizuho Sugihara, Studies of syntheses and permeabilities of special polymer membranes, Polymer Bulletin 15 (1986) 101–106. [37] R. Antony, T. Arun, S.T.D. Manickam, International Journal of Biological Macromolecules 129 (2019) 615-633. [38] Hammi, N. Chen, S. Dumeignil, F. Royer, S. El Kadib, A., Chitosan as a sustainable precursor for nitrogen-containing carbon nanomaterials: synthesis and uses, Materials Today Sustainability 10 (2020) 100053. [39] Yuetao Liu, Wenqian Xu, GuoHong Wang , Xuemei Qin, Material basis research for Huangqi Jianzhong Tang against chronic atrophic gastritis rats through integration of urinary metabonomics and SystemsDock, Journal of Ethnopharmacology 223 (15) (2018)1–9. [40] Jianyu Huang,Yeru Liang, Hang Hu, Simin Liu,Yijin Cai,Hanwu Dong, Mingtao Zheng,Yong Xiao and Yingliang Liu, Ultrahigh-surface-area hierarchical porous carbon from chitosan: acetic acid mediated efficient synthesis and its application in superior supercapacitors, Journal of Materials Chemistry 47 (2017). [41] Wulin Yanga, Xu Wang, Ruggero Rossi, Bruce E. Logan, Low-cost Fe–N–C catalyst derived from Fe (III)-chitosan hydrogel to enhance power production in microbial fuel cells, Chemical Engineering Journal, 380 (2020)122522. [42] A.S.P.Azzouz , T.S.Al-Ghabsha , A.N.Obed Agha, Determination of some imines structures derived from salicylaldehyde with phenylene diamines by physical methods, Chemistry department , College of education , Mosul University , IRAQ. [43] Monitoring of Heterogeneously Catalyzed Hydrogenation of Imines by Coupled ATR‐FTIR, UV/Vis, and Raman Spectroscopy, ChemCatChem 2(3) (2010) 273- 280. [44] S. Wen, G. Huang, S. Wu, J. Li, A. Qu, Determinant factors of photocatalytic hydrogen evolution activity for Schiff-base conjugated polymers, Chemical Engineering Journal 374 (2019) 1055-1063.
|