|
[1]A. González, E. Goikolea, J.A. Barrena, and R. Mysyk, Review on supercapacitors: Technologies and materials, Renew. Sustain. Energy Rev. 58 (2016) 1189-1206. [2]A.A. Karim, M. Kumar, E. Singh, A. Kumar, S. Kumar, A. Ray, and N.K. Dhal, Enrichment of primary macronutrients in biochar for sustainable agriculture: A review, Crit. Rev. Environ. Sci. Technol. 52 (9) (2021) 1449-1490. [3]P. Sharma and T.S. Bhatti, A review on electrochemical double-layer capacitors, Energy Convers. Manage. 51 (12) (2010) 2901-2912. [4]V. Augustyn, P. Simon, and B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage, Energy Environ. Sci. 7 (5) (2014) 1597-1614. [5]H. Shi, M. Du, W. Wu, Q. Zheng, and B. Hao, Application of microdiverse carbon materials and loaded binary metals in lithium-ion capacitors, J. Energy Storage 60 (2023) 106550. [6]T. Kim, G. Jung, S. Yoo, K.S. Suh, and R.S. Ruoff, Activated graphene-based carbons as supercapacitor electrodes with macro- and mesopores, ACS Nano 7 (8) (2013) 6899-905. [7]V. Subramanian, C. Luo, A.M. Stephan, K.S. Nahm, S. Thomas, and B.Q. Wei, Supercapacitors from activated carbon derived from banana fibers, J. Phys. Chem. C 111 (20) (2007) 7527-7531. [8]M.S. Balathanigaimani, W.G. Shim, M.J. Lee, C. Kim, J.W. Lee, and H. Moon, Highly porous electrodes from novel corn grains-based activated carbons for electrical double layer capacitors, Electrochem. Commun. 10 (6) (2008) 868-871. [9]M.C. Liu, L.B. Kong, P. Zhang, Y.C. Luo, and L. Kang, Porous wood carbon monolith for high-performance supercapacitors, Electrochim. Acta 60 (2012) 443-448. [10]E.Y.L. Teo, L. Muniandy, E.P. Ng, F. Adam, A.R. Mohamed, R. Jose, and K.F. Chong, High surface area activated carbon from rice husk as a high performance supercapacitor electrode, Electrochim. Acta 192 (2016) 110-119. [11]N. Yadav, M.K. Singh, N. Yadav, and S.A. Hashmi, High performance quasi-solid-state supercapacitors with peanut-shell- derived porous carbon, J. Power Sources 402 (2018) 133-146. [12]W.B. Zhang, B. Liu, M. Yang, Y.J. Liu, H.M. Li, and P.L. Liu, Biowaste derived porous carbon sponge for high performance supercapacitors, J. Mater. Sci. Technol. 95 (2021) 105-113. [13]M.R.K. Sofla, R.J. Brown, T. Tsuzuki, and T.J. Rainey, A comparison of cellulose nanocrystals and cellulose nanofibres extracted from bagasse using acid and ball milling methods, Adv. Nat. Sci. 7 (3) (2016) 035004. [14]T.E. Rufford, D. Hulicova-Jurcakova, K. Khosla, Z.H. Zhu, and G.Q. Lu, Microstructure and electrochemical double-layer capacitance of carbon electrodes prepared by zinc chloride activation of sugar cane bagasse, J. Power Sources 195 (3) (2010) 912-918. [15]S. Sarkar, A. Arya, U.K. Gaur, and A. Gaur, Investigations on porous carbon derived from sugarcane bagasse as an electrode material for supercapacitors, Biomass Bioenerg. 142 (2020) 105730. [16]Mohit, N. Yadav, and S.A. Hashmi, High energy density solid-state supercapacitors based on porous carbon electrodes derived from pre-treated bio-waste precursor sugarcane bagasse, J. Energy Storage 55 (2022) 105421. [17]M. Xu, A. Wang, Y. Xiang, A. Ejaz, and J. Niu, Self-template bagasse-based porous carbons for high performance supercapacitors, Ind. Crops Prod. 176 (2022) 114291. [18]W. Liu, S.K. Zhang, S.U. Dar, Y. Zhao, R. Akram, X.F. Zhang, S. Jin, Z.P. Wu, and D.Z. Wu, Polyphosphazene-derived heteroatoms-doped carbon materials for supercapacitor electrodes, Carbon 129 (2018) 420-427. [19]A. Nandagudi, S.H. Nagarajarao, M.S. Santosh, B.M. Basavaraja, S.J. Malode, R.J. Mascarenhas, and N.P. Shetti, Hydrothermal synthesis of transition metal oxides, transition metal oxide/carbonaceous material nanocomposites for supercapacitor applications, Mater. Today Sustain. 19 (2022) 100214. [20]P. Navalpotro, J. Palma, M. Anderson, and R. Marcilla, High performance hybrid supercapacitors by using para-Benzoquinone ionic liquid redox electrolyte, J. Power Sources 306 (2016) 711-717. [21]B.J. Choudhury, H.H. Muigai, P. Kalita, and V.S. Moholkar, Biomass blend derived porous carbon for aqueous supercapacitors with commercial-level mass loadings and enhanced energy density in redox-active electrolyte, Appl. Surf. Sci. 601 (2022) 154202. [22]M.M. Nassar, E.A. Ashour, and S.S. Wahid, Thermal characteristics of bagasse, J. Appl. Polym. Sci. 61 (6) (1996) 885-890. [23]Y. Wu, J.P. Cao, X.Y. Zhao, Z.Q. Hao, Q.Q. Zhuang, J.S. Zhu, X.Y. Wang, and X.Y. Wei, Preparation of porous carbons by hydrothermal carbonization and KOH activation of lignite and their performance for electric double layer capacitor, Electrochim. Acta 252 (2017) 397-407. [24]S.F. Kong, P.P. Zhang, X.F. Wen, P.H. Pi, J. Cheng, Z.R. Yang, and J. Hai, Influence of surface modification of SrFe12O19 particles with oleic acid on magnetic microsphere preparation, Part. 6 (3) (2008) 185-190. [25]Y. Wu, Y. Lin, and J. Xu, Synthesis of Ag-Ho, Ag-Sm, Ag-Zn, Ag-Cu, Ag-Cs, Ag-Zr, Ag-Er, Ag-Y and Ag-Co metal organic nanoparticles for UV-Vis-NIR wide-range bio-tissue imaging, Photochem. Photobiol. Sci. 18 (5) (2019) 1081-1091. [26]S.W. Ma, G. Zhang, H. Li, Z.X. Zhang, K. Li, and Q. Lu, Catalytic fast pyrolysis of walnut shell with K/AC catalyst for the production of phenolic-rich bio-oil, Biomass Convers. Bior. 12 (7) (2022) 2451-2462. [27]Y. Li, Y.R. Liang, H. Hu, H.W. Dong, M.T. Zheng, Y. Xiao, and Y.L. Liu, KNO3-mediated synthesis of high-surface-area polyacrylonitrile-based carbon material for exceptional supercapacitors, Carbon 152 (2019) 120-127. [28]F. Lufrano, P. Staiti, and M. Minutoli, Evaluation of nafion based double layer capacitors by electrochemical impedance spectroscopy, J. Power Sources 124 (1) (2003) 314-320. [29]L. Chen, T. Ji, L. Brisbin, and J. Zhu, Hierarchical Porous and High Surface Area Tubular Carbon as Dye Adsorbent and Capacitor Electrode, ACS Appl. Mater. Interfaces 7 (22) (2015) 12230-7. [30]C. Shi and I. Zhitomirsky, Electrodeposition and capacitive behavior of films for electrodes of electrochemical supercapacitors, Nanoscale Res. Lett. 5 (3) (2010) 518-23. [31]T. Chen, Y. Zhou, L. Luo, X. Wu, Z. Li, M. Fan, and W. Zhao, Preparation and characterization of heteroatom self-doped activated biocarbons as hydrogen storage and supercapacitor electrode materials, Electrochim. Acta 325 (2019) 134941. [32]F.C. Wu, R.L. Tseng, C.C. Hu, and C.C. Wang, Effects of pore structure and electrolyte on the capacitive characteristics of steam- and KOH-activated carbons for supercapacitors, J. Power Sources 144 (1) (2005) 302-309. [33]X. Kang, H. Zhu, C. Wang, K. Sun, and J. Yin, Biomass derived hierarchically porous and heteroatom-doped carbons for supercapacitors, J. Colloid Interface Sci. 509 (2018) 369-383. [34]N. Sudhan, K. Subramani, M. Karnan, N. Ilayaraja, and M. Sathish, Biomass-Derived Activated Porous Carbon from Rice Straw for a High-Energy Symmetric Supercapacitor in Aqueous and Non-aqueous Electrolytes, Energy Fuels 31 (1) (2017) 977-985. [35]O.P. Nanda, N.K. Das, P. Sekar, A. Ramadoss, and B. Saravanakumar, Bio-waste derived self-templated, nitrogen self-doped porous carbon for supercapacitors, Bioresour. Technol. Reports 19 (2022) 101198. [36]K.J. Sun, Z.G. Zhang, H. Peng, G.H. Zhao, G.F. Ma, and Z.Q. Lei, Hybrid symmetric supercapacitor assembled by renewable corn silks based porous carbon and redox-active electrolytes, Mater. Chem. Phys. 218 (2018) 229-238. [37]A. Agrawal, A. Gaur, and A. Kumar, Fabrication of Phyllanthus emblica leaves derived high-performance activated carbon-based symmetric supercapacitor with excellent cyclic stability, J. Energy Storage 66 (2023) 107395. [38]Y. Zhang, Y.P. Zhao, L.L. Qiu, J. Xiao, F.P. Wu, J.P. Cao, Y.H. Bai, and F.J. Liu, Insights into the KOH activation parameters in the preparation of corncob-based microporous carbon for high-performance supercapacitors, Diam. Relat. Mater. 129 (2022) 109331. [39]R.Q. Zhong, H.X. Zhang, Y.L. Zhang, P. Yue, and X.L. Wu, KMnO4-assisted synthesis of hierarchical porous carbon with ultrahigh capacitance for supercapacitor, J. Energy Storage 51 (2022) 104346. [40]M. Usha Rani, K. Nanaji, T.N. Rao, and A.S. Deshpande, Corn husk derived activated carbon with enhanced electrochemical performance for high-voltage supercapacitors, J. Power Sources 471 (2020) 228387. [41]A. Jain and S.K. Tripathi, Nano-porous activated carbon from sugarcane waste for supercapacitor application, J. Energy Storage 4 (2015) 121-127.
|