|
[1] B. Chen, N. Ren, Y. Li, L. Yan, S. Mazumdar, Y. Zhao, and X. Zhang, “Insights into the Development of Monolithic Perovskite/Silicon Tandem Solar Cells,” Advanced Energy Materials, Vol. 12, 2022, pp. 2003628. [2] H. Kanda, N. Shibayama, A. Uzum, T. Umeyama, H. Imahori, K. Ibi, and S. Ito, “Effect of Silicon Surface for Perovskite/Silicon Tandem Solar Cells: Flat or Textured?,” ACS applied materials & interfaces, Vol. 10, 2018, pp.35016-35024. [3] T. G. Allen, J. Bullock, X. Yang, A. Javey, and S. D. Wolf, “Passivating Contacts for Crystalline Silicon Solar Cells,” Nature Energy, Vol. 4, 2019, pp.914-928. [4] A. Descoeudres, Z. C. Holman, L. Barraud, S. Morel, S. D. Wolf, and C. Ballif, “> 21% Efficient Silicon Heterojunction Solar Cells on N-and P-type Wafers Compared,” IEEE Journal of Photovoltaics, Vol. 3, 2012, pp.83-89. [5] V. K. Jain and A. P. Kulshreshtha, “Indium-Tin-Oxide Transparent Conducting Coatings on Silicon Solar Cells and Their “Figure of Merit”,” Solar Energy Materials, Vol. 4, 1981, pp.151-158. [6] R. L. Z. Hoye, K. A. Bush, F. Oviedo, S. E. Sofia, M. Thway, X. Li, Z. Liu, J. Jean, J. P. Mailoa, A. Osherov, F. Lin, A. F. Palmstrom, V. Bulovic, M. D. McGehee, I. M. Peters, and T. Buonassisi, “Developing a Robust Recombination Contact to Realize Monolithic Perovskite Tandems with Industrially Common P-type Silicon Solar Cells,” IEEE Journal of Photovoltaics, Vol. 8, 2018, pp.1023-1028. [7] J. Hotovy, J. Hupkes, W. Bottler, E. Marins, L. Spiess, T. Kups, V. Smirnov, I. Hotovy, and J. Kovac, “Sputtered ITO for Application in Thin-Film Silicon Solar Cells: Relationship Between Structural And Electrical Properties,” Applied surface science, Vol. 269, 2013, pp.81-87. [8] J. Du, X. L. Chen, C. C. Liu, J. Ni, G. F. Hou, Y. Zhao, and X. D. Zhang, “Highly Transparent and Conductive Indium Tin Oxide Thin Films for Solar Cells Grown by Reactive Thermal Evaporation at Low Temperature,” Applied Physics A, Vol. 117, 2014, pp.815-822. [9] D. Zhang, A. Tavakoliyaraki, Y. Wu, R. A. C. M. M. V. Swaaij, and M. Zeman, “Influence of ITO Deposition and Post Annealing on HIT Solar Cell Structures,” Energy Procedia, Vol. 8, 2011, pp.207-213. [10] J. Haschke, R. Lemerle, B. Aissa, A. A. Abdallah, M. M. Kivambe, M. Boccard, and C. Ballif, “Annealing of Silicon Heterojunction Solar Cells: Interplay of Solar Cell and Indium Tin Oxide Properties,” IEEE Journal of Photovoltaics, Vol. 9, 2019, pp.1202-1207. [11] M. L. Addonizio, E. Gambale, and A. Antonaia, “Microstructure Evolution of Room-Temperature-Sputtered ITO Films Suitable for Silicon Heterojunction Solar Cells,” Current Applied Physics, Vol. 20, 2020, pp.953-960. [12] T. Krajangsang, V. Thongpool, C. Piromjit, and K. Sriprapha, “Development of Indium Tin Oxide Stack Layer Using Oxygen and Argon Gas Mixture for Crystalline Silicon Heterojunction Solar Cells,” Optical Materials, Vol. 101, 2020, pp.109743. [13] J. Bullock, C. Samundsett, A. Cuevas, D. Yan, Y. Wan, and T. Allen, “Proof-of-Concept P-type Silicon Solar Cells with Molybdenum Oxide Local Rear Contacts,” IEEE Journal of Photovoltaics, Vol. 5, 2015, pp.1591-1594. [14] J. Bullock, A. Cuevas, T. Allen, and C. Battaglia, “Molybdenum Oxide MoOx: A Versatile Hole Contact for Silicon Solar Cells,” Applied Physics Letters, Vol. 105, 2014, pp.232109. [15] A. Dominguez, O. D. Melo, A. Dutt, and G. Santana, “Study of Optoelectronic Properties of Thin MoOx Films for Application in Silicon Solar Cells,” IEEE, 2019, pp.2655-2658. [16] H. Nasser, F. Es, M. Z. Borra, E. Semiz, G. Kokbudak, E. orhan, and R. Turan, “On the Application of Hole‐Selective MoOx as Full‐Area Rear Contact for Industrial Scale P‐type C‐Si Solar Cells,” Progress in Photovoltaics: Research and Applications, Vol. 29, 2021, pp.281-293. [17] J. Dreon, Q. Jeangros, J. Cattin, J. Haschke, L. Antognini, C. Ballif, and M. Boccard, “23.5%-Efficient Silicon Heterojunction Silicon Solar Cell Using Molybdenum Oxide as Hole-Selective Contact,” Nano Energy, Vol. 70, 2020, pp.104495. [18] J. Chen, C. Liu, S. Xu, P. Wang, X. Ge, B. Han, Y. Zhang, M. Wang, X. Wu, L. Xu, P. Lin, X. Huang, X. Yu, and C. Cui, “Solution-Processed Molybdenum Oxide Films by Low-Temperature Annealing for Improved Silicon Surface Passivation,” Materials Science in Semiconductor Processing, Vol. 132, 2021, pp.105920. [19] W. Yoon, J. E. Moore, E. Cho, D. Scheiman, N. A. Kotulak, E. Cleveland, Y. W. Ok, P. P. Jenkins, A. Rohatgi, and R. J. Walters, “Hole-Selective Molybdenum Oxide as A Full-Area Rear Contact to Crystalline P-Type Si Solar Cells,” Japanese Journal of Applied Physics, Vol. 56, 2017, pp.08MB18. [20] C. L. Cheng, C. C. Liu, K. H. Liao, “Photovoltaic Characteristics of Passivated Emitter and Rear Contact Silicon Solar Cells with Chemical and Molybdenum Oxides Stacked Films,” 2019 26th International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD), Vol. 26, 2019. [21] D. Sacchetto, Q. Jeangros, G. Christmann, L. Barraud, A. Descoeudres, J. Geissbuhler, M. Despeisse, A. Hessler-Wyser, S. Nicolay, and C. Ballif, “ITO/MoOx/a-Si: H (i) Hole-Selective Contacts for Silicon Heterojunction Solar Cells: Degradation Mechanisms and Cell Integration,” IEEE Journal of Photovoltaics, Vol. 7, 2017, pp.1584-1590. [22] H. Ali, S. Koul, G. Gregory, J. Bullock, A. Javey, A. Kushima, K. O. Davis, “In Situ transmission Electron Microscopy Study of Molybdenum Oxide Contacts for Silicon Solar Cells,” physica status solidi (a), Vol.216, 2019, pp.1800998. [23] S. Q. Hussain, K. Mallem, Y. J. Kim, A. H. T. Le, M. Q. Khokhar, S. Kim, S. Dutta, S. Sanyal, Y. Kim, J. Park, Y. Lee, Y. H. Cho, E. C. Cho, and J. Yi, “Ambient Annealing Influence on Surface Passivation and Stoichiometric Analysis of Molybdenum Oxide Layer for Carrier Selective Contact Solar Cells,” Materials Science in Semiconductor Processing, Vol. 91, 2019, pp.267-274. [24] J. Schmidt, J. D. Moschner, J. Henze, S. Dauwe, and R. Hezel, “Recent Progress in The Surface Passivation of Silicon Solar Cells Using Silicon Nitride,” illumination,Vol. 3, 2004, pp.12. [25] J. D. Moschner, J. Henze, J. Schmidt, and R. Hezel, “High‐Quality Surface Passivation of Silicon Solar Cells in An Industrial‐Type Inline Plasma Silicon Nitride Deposition System,” Progress in Photovoltaics: Research and Applications, Vol. 12, 2004, pp.21-31. [26] K. J. Weber, and H. Jin, “Improved Silicon Surface Passivation Achieved by Negatively Charged Silicon Nitride Films,” Applied physics letters, Vol. 94, 2009, pp.063509. [27] Kerr, and M. John, “Surface, Emitter and Bulk Recombination in Silicon and Development of Silicon Nitride Passivated Solar Cells,” Australian National University, 2002. [28] A. E. Amrani, I. Menous, L. Mahiou, R. Tadjine, A. Touati, and A. Lefgoum, “Silicon Nitride Film for Solar Cells,” Renewable Energy, Vol. 33, 2008, pp.2289-2293. [29] A. E. Amrani, A. Bekhtari, A. E. Kechai, H. Menari, L. Mahiou, and M. Maoudj, “Efficient Passivation of Solar Cells by Silicon Nitride,” Vacuum, Vol. 120, 2015, pp.95-99. [30] S. Duttagupta, F. Ma, B. Hoex, T. Mueller, and A. G. Aberle, “Optimised Antireflection Coatings Using Silicon Nitride on Textured Silicon Surfaces Based on Measurements and Multidimensional Modelling,” Energy procedia, Vol. 15, 2012, pp.78-83. [31] B. Sopori, “Silicon Nitride Processing for Control of Optical and Electronic Properties of Silicon Solar Cells,” Journal of electronic materials, Vol. 32, 2003, pp.1034-1042. [32] J. Yoo, S. K. Dhungel, and J. Yi, “Annealing Optimization of Silicon Nitride Film for Solar Cell Application,” Thin Solid Films, Vol. 515, 2007, pp.7611-7614. [33] J. F. Lelievre, B. Kafle, P. Saint-Cast, P. Brunet, R. Magnan, E. Hernandez, S. pouliquen, and F. Massines, “Efficient Silicon Nitride SiNx: H Antireflective and Passivation Layers Deposited by Atmospheric Pressure PECVD for Silicon Solar Cells,” Progress in Photovoltaics: Research and Applications, Vol. 27, 2019, pp.1007-1019. [34] T. Lauinger, J. Moschner, A. G. Aberle, and R. Hezel, “UV Stability of Highest-Quality Plasma Silicon Nitride Passivation of Silicon Solar Cells,” Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference-1996, 1996.
|