|
[1] T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. 14, 235–254 (1977). [2] E. Popov, Gratings: Theory and Numeric Applications, 2nd ed. (Institut Fresnel, 2014). [3] S. Collin, “Nanostructure arrays in free-space: optical properties and applications,” Rep. Prog. Phys. 77, 126402 (2014). [4] H. Raether, Surface plasmons on smooth and rough surfaces and on gratings, Springer Tracts in Modern Physics (Springer-Verlag, Berlin-Heidelberg, 1988). [5] J. R. Sambles, G. W. Bradbery, F. Yang, “Optical excitation of surface plasmons: an introduction,” Contemp. Phys. 32, 173–183 (1991). [6] A. V. Zayats, I. I. Smolyaninov, A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005). [7] S. S. Wang, R. Magnusson, J. S. Bagby, M. G. Moharam, “Guided-mode resonances in planar dielectric-layer diffraction gratings,” J. Opt. Soc. Am. A 8, 1470–1475 (1990). [8] S. Boonruang, Two-dimensional Guided Mode Resonant Structures for Spectral Filtering Applications (Ph.D. dissertation, University of Central Florida, 2007). [9] S. Tibuleac and R. Magnusson, “Reflection and transmission guided-mode resonance filters,” J. Opt. Soc. Am. A 14, 1617–1626 (1997). [10] Y. Ding and R. Magnusson, “Resonant leaky-mode spectral-band engineering and device applications,” Opt. Express 12(23), 5661–5674 (2004). [11] A. Sharon, D. Rosenblatt, A. A. Friesem, “Resonant grating-waveguide structures for visible and near infrared radiation,” J. Opt. Soc. Am. A 14, 2985–2993 (1997). [12] U. Geyer, J. Hauss, B. Riedel, S. Gleiss, U. Lemmer, and M. Gerken, “Large-scale patterning of indium tin oxide electrodes for guided mode extraction from organic light-emitting diodes,” J. Appl. Phys. 104(9), 093111 (2008). [13] M. J. Uddin, T. Khaleque, and R. Magnusson, “Guided-mode resonant polarization-controlled tunable color filters,” Opt. Express 22(10), 12307–12315 (2014). [14] Y. Nazirizadeh, F. Oertzen, K. Plewa, N. Barié, P. Jakobs, M. Guttmann, H. Leiste, and M. Gerken, “Sensitivity optimization of injection-molded photonic crystal slabs for biosensing applications,” Opt. Mater. Express 3(5), 556–565 (2013). [15] W. J. Kim, B. K. Kim, A. Kim, C. Huh, C. S. Ah, K. H. Kim, J. Hong, S. H. Park, S. Song, J. Song, and G. Y. Sung, “Response to cardiac markers in human serum analyzed by guided-mode resonance biosensor,” Anal. Chem. 82(23), 9686–9693 (2010) [16] B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, “A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions,” Sens. Actuators B Chem. 85(3), 219–226 (2002). [17] W. Zhang, N. Ganesh, I. D. Block, and B. T. Cunningham, “High sensitivity photonic crystal biosensor incorporating nanorod structures for enhanced surface area,” Sens. Actuators B Chem. 131(1), 279–284 (2008). [18] Y. Nazirizadeh, J. Müller, U. Geyer, D. Schelle, E. B. Kley, A. Tünnermann, U. Lemmer, and M. Gerken, “Optical characterization of photonic crystal slabs using orthogonally oriented polarization filters,” Opt. Express 16(10), 7153–7160 (2008). [19] R. Magnusson, M. Shokooh-Saremi, and X. Wang, “Dispersion engineering with leaky-mode resonant photonic lattices,” Opt. Express 18, 108-116 (2010). [20] W. K. Kuo and C. H. Chang, “Phase detection properties of grating-coupled surface plasmon resonance sensors,” Opt. Express 18(19), 19656–19664 (2010). [21] Y. Lin, Z. Zhou, and R. Wang, "Optical heterodyne measurement of the phase retardation of a quarter-wave plate," Opt. Lett. 13, 559-555 (1988). [22] D. C. Su, M. H. Chiu, and C. D. Chen, "A heterodyne interferometer using an electro-optic modulator for measuring small displacements," J. Opt. 27, 19-23 (1996). [23] W. K. Kuo, J. Y. Kuo, and C. Y. Huang, “Electro-optic heterodyne interferometer,” Appl. Opt. 46, 3144–3149 (2007). [24] S. G. Nelson, K. S. Johnston, and S. S. Yee, “High sensitivity surface Plasmon resonance sensor based on phase detection,” Sens. Actuators B 35 (1-3), 187–191 (1996). [25] D. C. Cullen, R. G. W. Brown, and C. R. Lowe, “Detection of immuno-complex formation via surface plasmon resonance on gold-coated diffraction gratings,” Biosensors 3(4), 211–225 (1988). [26] W. K. Kuo, N. C. Huang, H. P. Weng, and H. H. Yu, “Tunable phase detection sensitivity of transmitted-type guided-mode resonance sensor in a heterodyne interferometer,” Opt. Express 22, 22968–22973 (2014). [27] R. Magnusson, K. J. Lee, and D. Wawro, “Guided-mode resonance biosensors employing phase detection,” in Frontiers in Optics 2004/Laser Science XXII/Diffractive Optics and Micro-Optics/Optical Fabrication and Testing, OSA Technical Digest (Optical Society of America, 2004), paper DTuC2. [28] R. Magnusson, M. Shokooh-Saremi, and E. G. Johnson, “Guided-mode resonant wave plates,” Opt. Lett. 35(14), 2472–2474 (2010). [29] W. K. Kuo, S.-H. Syu, P.-Z. Lin, and H. H. Yu, “Tunable sensitivity phase detection of transmitted-type dual-channel guided-mode resonance sensor based on phase-shift interferometry,” Appl. Opt. 55, 903–904 (2016). [30] J. H. Bruning, J. E. Gallagher, D. P. Rosenfeld, A. D. White, D. J. Brangaccio, D. R. Herriott, “Digital Wave Front Measuring Interferometer for Testing Optical Surfaces and Lenses,” Appl. Opt. 13, 2693 (1974). [31] K. I. Joo, C.-S. Park, M.-K. Park, K.-W. Park, J.-S. Park, Y. Seo, J. Hahn, and H.-R. Kim, “Multi-spatial-frequency and phase-shifting profilometry using a liquid crystal phase modulator,” Appl. Opt. 51, 2624–2632 (2012). [32] P. K. Sahoo, S. Sarkar, and J. Joseph, “High sensitivity guided-mode-resonance optical sensor employing phase detection,” Sci. Rep. 7, 7607 (2017). [33] I. Barth, D. Conteduca, C. Reardon, S. Johnson, and T. F. Krauss, “Common-path interferometric label-free protein sensing with resonant dielectric nanostructures,” Light Sci. Appl. 9, 96 (2020). [34] M. Li, H. Tan, L. Chen, J. Wang, and S. Y. Chou, “Large area direct nanoimprinting of SiO2–TiO2 gel gratings for optical applications,” J. Vac. Sci. Technol. B 21(2), 660–663 (2003). [35] A. Taflove, S.C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed., Artech, Norwood, MA, 2005. [36] EM Explorer, EM Explorer User Guide [37] M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71, 811–818 (1981). [38] GSolver, GSolver Version 5.2 User’s Guide [39] Synopsys, Photonic Solutions DiffractMOD RCWA v2021.03 User Guide [40] W. Lin, J. Zheng, L. Yan, X. Zhang, “Sol-gel preparation of self-cleaning SiO2-TiO2/SiO2-TiO2 double-layer antireflective coating for solar glass,” Results Phys, 8 (2018). [41] C. C. Liu, J. G. Li, and S. W. Kuo, “Co-template method provides hierarchical mesoporous silicas with exceptionally ultra-low refractive indices,” RSC Advances 4(39), 20262–20272 (2014). [42] Ma, P. et al. Fast fabrication of TiO2 hard stamps for nanoimprint lithography. Mater. Res. Bull. 90, 253–259 (2017). [43] Y. Xia and G. M. Whitsides, "Soft lithography," Annu. Rev. Mater. Sci. 28, 153-184 (1998). [44] R. Zhang, J. K. Chu, J. Min, H. X. Wang, and Z. W. Wang, “Simple process for 60 nm patterned nickel stamp replication,” IET Micro Nano Lett.8, 5–7 (2013). [45] L. J. Heyderman, H. Schift, C. David, B. Ketterer, M. Auf der Maur, and J. Gobrecht, “Nanofabrication using hot embossing lithography and electroforming,” Microelectron. Eng. 57–58, 375–380 (2001). [46] G. Niederer, H. P. Herzig, J. Shamir, H. Thiele, M. Schnieper, Ch. Zschokke, “Tunable, oblique incidence resonant grating filter for telecommunications,” Appl. Opt., 43 1683 –1694 (2004). [47] G. Niederer, W. Nakagawa, H. P. Herzig, and H. Thiele, “Design and characterization of a tunable polarization-independent resonant grating filter,” Opt. Express, 13 2196 –2200 (2005). [48] A. Mizutani, H. Kikuta, K. Nakajima, and K. Iwata, “Nonpolarizing guided-mode resonant grating filter for oblique incidence,” J. Opt. Soc. Am. A, 18 1261 –1266 (2001) [49] B. Shenget al., “Tunable and polarization-independent wedged resonance filters with 2D crossed grating,” IEEE Photon. Technol. Lett. 28(20), 2211–2214 (2016). [50] W. K. Kuo and C. J. Hsu, “Two-dimensional grating guided-mode resonance tunable filter,” Opt. Express, 25 29642 –29649 (2017). [51] N. L. Privorotskaya, C. J. Choi, B. T. Cunningham, and W. P. King, “Sensing micrometer-scale deformations via stretching of a photonic crystal,” Sens. Actuators, A 161, 66–71 (2010). [52] S. Foland, B. Swedlove, H. Nguyen, and J. B. Lee, “One-dimensional nanograting-based guided-mode resonance pressure sensor,” J. Microelect. Syst. 21, 1117–1123 (2012). [53] T. Karrock and M. Gerken, “Pressure sensor based on flexible photonic crystal membrane,” Biomed. Opt. Express 6, 4901–4911 (2015). [54] S. Sarkar, S. Poulose, P. K. Sahoo, and J. Joseph, “Flexible and stretchable guided-mode resonant optical sensor: single-step fabrication on a surface engineered polydimethylsiloxane substrate,” OSA Contin. 1, 1277–1286 (2018). [55] P. Escudero, J. Yeste, C. Pascual-Izarra, R. Villa, and A. Alvarez, “Color tunable pressure sensors based on polymer nanostructured membranes for optofluidic applications,” Sci. Rep. 9, 3259 (2019). [56] L. Wang, M. Zhang, M. Yang, W. Zhu, J. Wu, X. Gong, and W. Wen, “Polydimethylsiloxane-integratable micropressure sensor for microfluidic chip,” Biomicrofluidics 3, 034105 (2009). [57] Y. C. Wang, W. Y. Jang, and C. S. Huang, “Lightweight torque sensor based on a gradient grating period guided-mode resonance filter,” IEEE Sens. J. 19, 6610–6617 (2019). [58] M.-A. Mattelin, J. Missinne, B. D. Coensel, and G. V. Steenberge, “Imprinted polymer-based guided mode resonance grating strain sensors,” Sensors 20, 3221 (2020). [59] J. R. Wagner, E. M. Mount, and H. F. Giles, “Blown film,” in Extrusion, J. R. Wagner, E. M. Mount, H. F. Giles, and A. William, eds., 2nd ed., (ASM International, 2014), vol. 3, pp. 539–549. [60] J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction grating and prism couplers: sensitivity comparison,” Sens. Actuators B Chem. 54(1–2), 16–24 (1999). [61] J. Dostálek, J. Homola, and M. Miler, “Rich information format surface plasmon resonance biosensor based on array of diffraction gratings,” Sens. Actuators B Chem. 107(1), 154–161 (2005). [62] M. Piliarik, M. Vala, I. Tichý, and J. Homola, “Compact and low-cost biosensor based on novel approach to spectroscopy of surface plasmons,” Biosens. Bioelectron. 24(12), 3430–3435 (2009). [63] A. Sonato, M. Agostini, G. Ruffato, E. Gazzola, D. Liuni, G. Greco, M. Travagliati, M. Cecchini, and F. Romanato, “A surface acoustic wave (SAW)-enhanced grating-coupling phase-interrogation surface plasmon resonance (SPR) microfluidic biosensor,” Lab Chip 16(7), 1224–1233 (2016). [64] A. T. Reiner, S. Fossati, and J. Dostalek, “Biosensor platform for parallel surface plasmon-enhanced epifluorescence and surface plasmon resonance detection,” Sens. Actuators B Chem. 257, 3430–3435 (2009). [65] N. C. Lindquist, T. W. Johnson, J. Jose, L. M. Otto, and S. H. Oh, “Ultrasmooth metallic films with buried nanostructures for backside reflection-mode plasmonic biosensing,” Ann. Phys. 524(11), 687–696 (2012). [66] S. Pi, X. Zeng, N. Zhang, D. Ji, B. Chen, H. Song, A. Cheney, Y. Xu, S. Jiang, D. Sun, Y. Song, and Q. Gan, “Dielectric-grating-coupled surface plasmon resonance from the back side of the metal film for ultrasensitive sensing,” IEEE Photonics J. 8(1), 4800207 (2009). [67] R. Horvath, H. C. Pedersen, and N. B. Larsen, “Demonstration of reverse symmetry waveguide sensing in aqueous solutions,” Appl. Phys. Lett. 81(12), 2166–2168 (2002). [68] D. Lacour, G. Granet, J. P. Pluemey, A. Mure-Ravaud, “Polarization independence of a one-dimensional grating in conical mounting,” J. Opt. Soc. Am. A 20, 1546–1552 (2003). [69] R. Yukino, P. K. Sahoo, J. Sharma, T. Takamura, J. Joseph, and A. Sandhu, “Wide wavelength range tunable one-dimensional silicon nitride nanograting guided mode resonance filter based on azimuthal rotation,” AIP Adv. 7, 015313 (2017). [70] Weber, M.J. Handbook of Optical Materials; CRC Press: Boca Raton, FL, USA, 2003. [71] Y. Ishii, J. Chen, and K. Murata, "Digital phase-measuring interferometry with a tunable laser diode," Opt. Lett. 12, 233-235 (1987). [72] H. Kadono, M. Ogusu, and S. Toyooka, “Phase shifting common path interferometer using a liquid-crystal phase modulator,” Opt. Commun. 110, 391–400 (1994). [73] Y. Bitou, “Digital phase-shifting interferometer with an electrically addressed liquid-crystal spatial light modulator,” Opt. Lett 28, 1576-1578 (2003). [74] S. Turtaev, I. T. Leite, K. J. Mitchell, M. J. Padgett, D. B. Phillips, and T. Cizmar, “Comparison of nematic liquid-crystal and DMD based spatial light modulation in complex photonics,” Opt. Express 25, 29874–29884 (2017). [75] Using Lasers with DLP DMD Technology; TI DN 2509927; Texas Instruments: Dallas, TX, USA, 2008. [76] P. Hariharan, B. F. Oreb, and T. Eiju, “Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm,” Appl. Opt. 26, 2504-2506 (1987).
|