[1]方怡丹、蔡清榮,2016,“臺灣菇類產業之發展與輔導”,菇類生技產業研討會專刊。
[2]黃燿聖,2013,“菇類太空包自動化套袋模組之研究”,國立虎尾科技大學機械設計工程系碩士班碩士論文,雲林縣。[3]陳柏翰,2013,“液態接種噴嘴系統之研究”,國立虎尾科技大學機械設計工程系碩士班碩士論文,雲林縣。[4]阮忠興,2015,“創新菇類智慧製造產線之研究”,國立虎尾科技大學機械設計工程系碩士班碩士論文,雲林縣。[5]李志仁,2017,“創新袋式液態菌種接菌系統之研究”,國立虎尾科技大學機械設計工程系碩士班碩士論文,雲林縣。[6]蔡孟佑,2018,“菇類太空包自動化生產作業模擬”,國立虎尾科技大學機械設計工程系碩士班碩士論文,雲林縣。[7]劉瑋珊,2015,“太空包束口翻袋機構之創新設計”,國立虎尾科技大學機械設計工程系碩士班碩士論文,雲林縣。[8]黃文信,2018,“基於深度學習之杏鮑菇自動化分級系統之研究”,國立虎尾科技大學機械設計工程系碩士班碩士論文,雲林縣。[9]蘇爾曼,2019,“創新菇類栽培物聯網”,國立虎尾科技大學機械設計工程系碩士班碩士論文,雲林縣。[10]林明毅,2019,“杏鮑菇自動化採收機構之研究”,國立虎尾科技大學機械設計工程系碩士班碩士論文,雲林縣。[11]古丙駿,2019,“杏鮑菇採收深度學習物件辨識系統之研究”,國立虎尾科技大學機械設計工程系碩士班碩士論文,雲林縣。[12]顏靖峰,2021,“袋栽杏鮑菇完株採收機構之研究”,國立虎尾科技大學機械設計工程系碩士班碩士論文,雲林縣。[13]胡原愷,2020,“袋栽菇類製包流程智慧檢測系統之研究”,國立虎尾科技大學機械設計工程系碩士班碩士論文,雲林縣。[14]邱弘丞,2020,“自主移動式智慧物聯模組在菇類栽培之研究”,國立虎尾科技大學機械設計工程系碩士班碩士論文,雲林縣。[15]周榮源、石信德、黃文信,2020,“袋栽菇類製包技術回顧與智慧化發展初探”,行政院農委會農業科技決策資訊平台。2022年10月,取自https://agritech-foresight.atri.org.tw/article/contents/3144
[16]Auernhammer, Hermann, 2001, "Precision farming—the environmental challenge", Computers and electronics in agriculture, 30.1-3, pp. 31-43.
[17]Moysiadis, Vasileios, et al., 2021, "Smart farming in Europe", Computer science review, 39, 100345.
[18]Cambra Baseca, Carlos, et al., 2019, "A smart decision system for digital farming", Agronomy, 9, no. 5: 216.
[19]De Clercq, Matthieu, Anshu Vats, and Alvaro Biel, 2018, "Agriculture 4.0: The future of farming technology", Proceedings of the World Government Summit, pp. 11-13.
[20]K. Rawal, G. Gabrani, 2020, "Iot based computing to monitor indoor plants by using smart pot", SSRN 3562964.
[21]M. J. C. Samonte, E. P. E. Signo, et al., 2019, "Phyto: An iot urban gardening mobile app", Proceedings of the 2019 2nd International Conference on Information Science and Systems, pp. 135-139.
[22]N. Abd Rahim, F. A. Zaki, et al., 2020, "Smart app for gardening monitoring system using iot technology", system, vol. 29, no. 04, pp. 7375-7384.
[23]Owen Bawden, et al., 2017, "Robot for weed species plant-specific management", Special Issue: Agricultural Robotics, pp. 1179-1199.
[24]Christopher Lehnert, et al., 2017, "Autonomous Sweet Pepper Harvesting for Protected Cropping Systems", IEEE Robotics and Automation Letters, vol. 2, no. 2, pp. 872-879.
[25]Nguyen Duc Tai, Nguyen Truong Thinh, 2019, "Design of Cable Measuring System of a Robot Spraying Pesticides in Agricultural Farm", 2019 International Conference on System Science and Engineering, pp. 577-580.
[26]Xunchen Liu, et al., 2022, "Intelligent UAV platform: assist construction of agricultural production automation", 2022 7th International Conference on Intelligent Computing and Signal Processing (ICSP), pp. 1009-1012.
[27]Henry A.M. Williams, et al., 2019, "Robotic kiwifruit harvesting using machine vision, convolutional neural networks and robotic arms", Biosystems Engineering, Volume 181, pp. 140-156.
[28]Georgi Komitov, et al., 2022, "About the methodology for working a robot to destroy weeds", 2022 8th International Conference on Energy Efficiency and Agricultural Engineering, pp. 1-4.
[29]Vasconez, et al., 2019, "Human–robot interaction in agriculture: A survey and current challenges", Biosystems engineering 179, pp. 35-48.
[30]Adamides, Georgios, 2016, "User interfaces for human-robot interaction: Application on a semi-autonomous agricultural robot sprayer", PhD Doctoral Dissertation, Open University of Cyprus.
[31]R. C. Luo, et al., 2020, "Modular ROS Based Autonomous Mobile Industrial Robot System for Automated Intelligent Manufacturing Applications", 2020 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp. 1673-1678.
[32]L. Arcos, et al., 2020, "ROS based Experimental Testbed for Multi-Robot Formation Control", 2020 IEEE ANDESCON, pp. 1-6.
[33]A. Belzunce, et al., 2016, "Control system design of a teleoperated omnidirectional mobile robot using ROS", 2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA), pp. 1283-1287.
[34]G. Anand, et al., 2017, "A sensor framework for human-robot collaboration in industrial robot work-cell", 2017 International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT), pp. 715-720.
[35]R. A. Atmoko and D. Yang, 2018, "Online Monitoring & Controlling Industrial Arm Robot Using MQTT Protocol", 2018 IEEE International Conference on Robotics, Biomimetics, and Intelligent Computational Systems (Robionetics ), pp. 12-16.
[36]Z. Al-Mashhadani, et al., 2020, "Autonomous Exploring Map and Navigation for an Agricultural Robot", 2020 3rd International Conference on Control and Robots (ICCR), pp. 73-78.
[37]V. R. Ponnambalam, et al., 2020, "Agri-Cost-Maps - Integration of Environmental Constraints into Navigation Systems for Agricultural Robots", 2020 6th International Conference on Control, Automation and Robotics (ICCAR), pp. 214-220.
[38]S. Kalaivanan and R. Kalpana, 2017, "Coverage path planning for an autonomous robot specific to agricultural operations", 2017 International Conference on Intelligent Computing and Control (I2C2), pp. 1-5.
[39]W. Hess, D. Kohler, et al., 2016, "Real-time loop closure in 2D LIDAR SLAM," 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 1271-1278.
[40]Qu, Pengtao, et al., 2021, "Mapping performance comparison of 2D SLAM algorithms based on different sensor combinations", Journal of Physics: Conference Series, Vol. 2024, No. 1, p. 012056.
[41]行政院農業委員會農業知識入口網,2017年8月,杏鮑菇栽培技術(二)。2022年12月,取自https://kmweb.coa.gov.tw/theme_data.php?theme=news&sub_theme=variety&id=54786
[42]Redmon, Joseph, et al., 2016, "You only look once: Unified, real-time object detection", Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 779-788.
[43]YOLO, 2016, YOLO: Real-Time Object Detection. Retrieved May, 2022, from https://pjreddie.com/darknet/yolov2/
[44]Z. Tang, et al., 2021, "Pest-YOLO: Deep Image Mining and Multi-Feature Fusion for Real-Time Agriculture Pest Detection", 2021 IEEE International Conference on Data Mining (ICDM), Auckland, pp. 1348-1353.
[45]M. Lippi, et al., 2021, "A YOLO-Based Pest Detection System for Precision Agriculture", 2021 29th Mediterranean Conference on Control and Automation (MED), PUGLIA, pp. 342-347.
[46]V. Ponnusamy, et al., 2020, "Smart Glass: Real-Time Leaf Disease Detection using YOLO Transfer Learning", 2020 International Conference on Communication and Signal Processing (ICCSP), pp. 1150-1154.
[47]C. Song, et al., 2020, "Automatic Detection and Image Recognition of Precision Agriculture for Citrus Diseases", 2020 IEEE Eurasia Conference on IOT, Communication and Engineering (ECICE), pp. 187-190.
[48]Wang Chien-Yao, Alexey Bochkovskiy, Hong-Yuan Mark Liao, 2021, "Scaled-yolov4: Scaling cross stage partial network", Proceedings of the IEEE/cvf conference on computer vision and pattern recognition, pp. 13029-13038.
[49]Wang Chien-Yao, Alexey Bochkovskiy, Hong-Yuan Mark Liao, 2022, "YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors", arXiv preprint arXiv:2207.02696.
[50]Wang Chien-Yao, 2022, "yolov7". Retrieved October, 2022, from https://github.com/WongKinYiu/yolov7
[51]ODrive Robotics, 2022, "ODrive Pro Documentation". Retrieved December, 2020, from https://docs.odriverobotics.com/v/latest/getting-started.html
[52]Malu, et al., 2014, "Kinematics, localization and control of differential drive mobile robot", Global Journals of Research in Engineering, 14(H1), pp. 1-7.
[53]YDLIDAR, 2020 , "ydlidar_ros_driver". Retrieved October, 2021, from https://github.com/YDLIDAR/ydlidar_ros_driver
[54]Swarn Avinash Kumar, Wolfgang Hess, 2022 , "Cartographer ROS". Retrieved December, 2021, from https://google-cartographer-ros.readthedocs.io/en/latest/compilation.html
[55]ROS.org, 2020, "Navigation". Retrieved December, 2020, from http://wiki.ros.org/navigation
[56]Wang Chien-Yao, 2021, "ScaledYOLOv4". Retrieved December, 2021, from https://github.com/WongKinYiu/ScaledYOLOv4/archive/yolov4-csp