|
[1] Dang, Z. M., Yuan, J. K., Zha, J. W., Zhou, T., Li, S. T., & Hu, G. H. (2012). Fundamentals, processes and applications of high-permittivity polymer–matrix composites. Progress in materials science, 57(4), 660-723 [2] Shalf, J. (2020). The future of computing beyond Moore’s Law. Philosophical Transactions of the Royal Society A, 378(2166), 20190061. [3] Deshpande, R. P. (2012). Capacitors: technology and trends. New York: Tata McGraw Hill Education. [4] Mishra, S., Sahoo, R., Unnikrishnan, L., Ramadoss, A., Mohanty, S., & Nayak, S. K. (2020). Investigation of the electroactive phase content and dielectric behaviour of mechanically stretched PVDF-GO and PVDF-rGO composites. Materials Research Bulletin, 124, 110732. [5] Huang, L., Lu, C., Wang, F., & Wang, L. (2014). Preparation of PVDF/graphene ferroelectric composite films by in situ reduction with hydrobromic acids and their properties. Rsc Advances, 4(85), 45220-45229. [6] Xia, W., & Zhang, Z. (2018). PVDF‐based dielectric polymers and their applications in electronic materials. Iet Nanodielectrics, 1(1), 17-31. [7] Zhu, L. (2014). Exploring strategies for high dielectric constant and low loss polymer dielectrics. The journal of physical chemistry letters, 5(21), 3677-3687. [8] Sui, Y., Chen, W. T., Ma, J. J., Hu, R. H., & Liu, D. S. (2016). Enhanced dielectric and ferroelectric properties in PVDF composite flexible films through doping with diisopropylammonium bromide. RSC advances, 6(9), 7364-7369. [9] Nishiyama, T., Sumihara, T., Sasaki, Y., Sato, E., Yamato, M., & Horibe, H. (2016). Crystalline structure control of poly (vinylidene fluoride) films with the antisolvent addition method. Polymer Journal, 48(10), 1035-1038. [10] Ruan, L., Yao, X., Chang, Y., Zhou, L., Qin, G., & Zhang, X. (2018). Properties and applications of the β phase poly (vinylidene fluoride). Polymers, 10(3), 228. [11] Uyor, U. O., Popoola, A. P., Popoola, O., & Aigbodion, V. S. (2018). Energy storage and loss capacity of graphene‐reinforced poly (vinylidene fluoride) nanocomposites from 73 electrical and dielectric properties perspective: a review. Advances in Polymer Technology, 37(8), 2838-2858. [12] Charlier, J. C., Gonze, X., & Michenaud, J. P. (1994). Graphite interplanar bonding: electronic delocalization and van der Waals interaction. Europhysics letters, 28(6), 403. [13] Sutphin, D. M., & Bliss, J. D. (1990). Disseminated flake graphite and amorphous graphite deposit types. An analysis using grade and tonnage models. CIM Bulletin, 83(940), 85-89. [14] "Encyclopædia Britannica Online," [Online]. Available: https://www.britannica.com/science/graphite-carbon. [15] IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "highly oriented pyrolytic graphite". doi:10.1351/goldbook.H02823. [16] Delhaes, P. (2001). Graphite and Precursors. CRC Press. ISBN 978-90-5699-228-6. [17] Chung, D. D. L. (2002). Review graphite. Journal of materials science, 37, 1475-1489. [18] Bernal, J. D. (1924). The structure of graphite. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 106(740), 749-773. [19] Wyckoff, R. W. G. (1963). Crystal Structures, Vol. 1, Interscience Publ. Inc., New York. [20] Ruland, W., & Walker, P. L. (1968). Chemistry and Physics of Carbon. Walker and Thrower. [21] Brillson, L. J., Burstein, E., Maradudin, A. A., & Stark, T. (1971). The Physics of Semimetals and Narrow Gap Semiconductors. Carter and Bate (Pergamon Press, NewYork, 1971) p, 187. [22] Latychevskaia, T., Son, S. K., Yang, Y., Chancellor, D., Brown, M., Ozdemir, S., ... & Novoselov, K. S. (2019). Stacking transition in rhombohedral graphite. Frontiers of Physics, 14, 1-7. [23] IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "Rhombohedral graphite". doi:10.1351/goldbook.R05385 74 [24] Paredes, J. I., Villar-Rodil, S., Martínez-Alonso, A., & Tascon, J. M. (2008). Graphene oxide dispersions in organic solvents. Langmuir, 24(19), 10560-10564. [25] Ando, T., Fowler, A. B., & Stern, F. (1982). Electronic properties of two-dimensional systems. Reviews of Modern Physics, 54(2), 437. [26] Petrovski, A., Dimitrov, A. T., Grozdanov, A., Paunović, P., Andonović, B., Gentile, G., ... & Ranguelov, B. (2017). Study of Graphene Obtained by Electrolysis in Sulfuric Acid Electrolytes. SciFed Nanotech Research Letters. [27] Cooper, D. R., D’Anjou, B., Ghattamaneni, N., Harack, B., Hilke, M., Horth, A., ... & Yu, V. (2012). Experimental review of graphene. International Scholarly Research Notices, 2012. [28] Oh, Y., Bharambe, V., Mummareddy, B., Martin, J., McKnight, J., Abraham, M. A., ... & Adams, J. J. (2019). Microwave dielectric properties of zirconia fabricated using NanoParticle Jetting™. Additive Manufacturing, 27, 586-594. [29] Hajiyeva, F. V., Ramazanov, M. A., Maharramov, A. M., Hasanova, U. A., & Rahimli, A. M. (2017). Influence temperature time mode of crystallization on the structure and properties of nanocomposites based on polyvinylidene fluoride (PVDF) and zirconium oxide nanoparticles (ZrO2). Journal of Optoelectronics and Biomedical Materials Vol, 9(1), 1-7. [30] Bruggeman, D. A. G. (1935). The calculation of various physical constants of heterogeneous substances. I. The dielectric constants and conductivities of mixtures composed of isotropic substances. Annals of Physics, 416, 636-791. [31] Nan, C. W. (1993). Physics of inhomogeneous inorganic materials. Progress in materials science, 37(1), 1-116. [32] Wagner, K. W. (1914). The after effect in dielectrics. Arch. Electrotech, 2(378), e394. [33] Nelson, S. O., & You, T. S. (1990). Relationships between microwave permittivities of solid and pulverised plastics. Journal of physics D: applied physics, 23(3), 346. [34] Shen, L. C., Savre, W. C., Price, J. M., & Athavale, K. (1985). Dielectric properties of reservoir rocks at ultra-high frequencies. geophysics, 50(4), 692-704. [35] Jayasundere, N., & Smith, B. V. (1993). Dielectric constant for binary piezoelectric 0‐3 composites. Journal of Applied Physics, 73(5), 2462-2466. 75 [36] Böttcher, C. J. F., van Belle, O. C., Bordewijk, P., Rip, A., & Yue, D. D. (1974). Theory of electric polarization. Journal of The Electrochemical Society, 121(6), 211Ca. [37] Van Beek, L. K. H. (1967). Dielectric behaviour of heterogeneous systems. Progress in dielectrics, 7(71), 113. [38] Sillars, R. W. (1937). The properties of a dielectric containing semiconducting particles of various shapes. Journal of the Institution of Electrical Engineers, 80(484), 378-394. [39] Landauer, R. (1952). The electrical resistance of binary metallic mixtures. Journal of applied physics, 23(7), 779-784. [40] Garnett, J. M. (1904). XII. Colours in metal glasses and in metallic films. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 203(359-371), 385-420. [41] Smith, G. B. (1977). Dielectric constants for mixed media. Journal of Physics D: Applied Physics, 10(4), L39. [42] Tuncer, E., Gubański, S. M., & Nettelblad, B. (2001). Dielectric relaxation in dielectric mixtures: Application of the finite element method and its comparison with dielectric mixture formulas. Journal of Applied Physics, 89(12), 8092-8100. [43] Shalaev, V. M. (1996). Electromagnetic properties of small-particle composites. Physics Reports, 272(2-3), 61-137. [44] Koa, K. C. (2004). Dielectric Phenomena in Solids with Emphasis of Physical Concepts of Electronic Processes. Elsevier Academic Press. [45] Volkov, A. A., & Prokhorov, A. S. (2003). Broadband dielectric spectroscopy of solids. Radiophysics and Quantum Electronics, 46(8-9), 657-665. [46] Pyun, J., & Matyjaszewski, K. (2001). Synthesis of nanocomposite organic/inorganic hybrid materials using controlled/“living” radical polymerization. Chemistry of Materials, 13(10), 3436-3448. [47] Zhao, B., & Zhu, L. (2009). Mixed polymer brush-grafted particles: a new class of environmentally responsive nanostructured materials. Macromolecules, 42(24), 9369- 9383. [48] Ramadoss, A., & Kim, S. J. (2013). Improved activity of a graphene–TiO2 hybrid electrode in an electrochemical supercapacitor. Carbon, 63, 434-445. 76 [49] Pendolino, F., Armata, N., Masullo, T., & Cuttitta, A. (2015). Temperature influence on the synthesis of pristine graphene oxide and graphite oxide. Materials Chemistry and Physics, 164, 71-77. [50] Potts, J. R., Lee, S. H., Alam, T. M., An, J., Stoller, M. D., Piner, R. D., & Ruoff, R. S. (2011). Thermomechanical properties of chemically modified graphene/poly (methyl methacrylate) composites made by in situ polymerization. Carbon, 49(8), 2615-2623. [51] Smirnov, A., Solís Pinargote, N. W., Peretyagin, N., Pristinskiy, Y., Peretyagin, P., & Bartolomé, J. F. (2020). Zirconia reduced graphene oxide nano-hybrid structure fabricated by the hydrothermal reaction method. Materials, 13(3), 687. [52] Meeporn, K., Thongbai, P., Yamwong, T., & Maensiri, S. (2017). Greatly enhanced dielectric permittivity in La 1.7 Sr 0.3 NiO 4/poly (vinylidene fluoride) nanocomposites that retained a low loss tangent. RSC advances, 7(28), 17128-17136. [53] Maceiras, A., Costa, C. M., Lopes, A. C., San Sebastián, M., Laza, J. M., Vilas, J. L., ... & León, L. M. (2015). Dielectric relaxation dynamics of high-temperature piezoelectric polyimide copolymers. Applied Physics A, 120, 731-743. [54] Das, R. S., Warkhade, S. K., Kumar, A., & Wankhade, A. V. (2019). Graphene oxidebased zirconium oxide nanocomposite for enhanced visible light-driven photocatalytic activity. Research on Chemical Intermediates, 45, 1689-1705. [55] Satapathy, S., Pawar, S., Gupta, P. K., & Varma, K. B. R. (2011). Effect of annealing on phase transition in poly (vinylidene fluoride) films prepared using polar solvent. Bulletin of Materials Science, 34, 727-733. [56] Boccaccio, T., Bottino, A., Capannelli, G., & Piaggio, P. (2002). Characterization of PVDF membranes by vibrational spectroscopy. Journal of membrane science, 210(2), 315-329.
|