|
[1]Kojima, A., Teshima, K., Shirai, Y., & Miyasaka, T. (2009). Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 131(17), 6050-6051. [2]https://www.nrel.gov/pv/cell-efficiency.html. accessed on 6th April 2020. [3]Jiang, Q., Zhao, Y., Zhang, X., Yang, X., Chen, Y., Chu, Z., ... & You, J. (2019). Surface passivation of perovskite film for efficient solar cells. Nature Photonics, 13(7), 460-466. [4]Liao, J. F., Wu, W. Q., Jiang, Y., Zhong, J. X., Wang, L., & Kuang, D. B. (2020). Understanding of carrier dynamics, heterojunction merits and device physics: towards designing efficient carrier transport layer-free perovskite solar cells. Chemical Society Reviews, 49(2), 354-381. [5]Vak, D., Kim, S. S., Jo, J., Oh, S. H., Na, S. I., Kim, J., & Kim, D. Y. (2007). Fabrication of organic bulk heterojunction solar cells by a spray deposition method for low-cost power generation. Applied Physics Letters, 91(8), 081102. [6]Aernouts, T., Aleksandrov, T., Girotto, C., Genoe, J., & Poortmans, J. (2008). Polymer based organic solar cells using ink-jet printed active layers. Applied Physics Letters, 92(3), 22. [7]Chang, Y. H., Tseng, S. R., Chen, C. Y., Meng, H. F., Chen, E. C., Horng, S. F., & Hsu, C. S. (2009). Polymer solar cell by blade coating. Organic Electronics, 10(5), 741-746. [8]Mei, A., Li, X., Liu, L., Ku, Z., Liu, T., Rong, Y., ... & Han, H. (2014). A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability. science, 345(6194), 295-298. [9]Ku, Z., Rong, Y., Xu, M., Liu, T., & Han, H. (2013). Full printable processed mesoscopic CH 3 NH 3 PbI 3/TiO 2 heterojunction solar cells with carbon counter electrode. Scientific reports, 3(1), 1-5. [10]Han, H., Zhang, L., Liu, T., Liu, L., Hu, M., Yang, Y., & Mei, A. (2015). The effect of carbon counter electrode on fully printable mesoscopic perovskite solar cell. J. Mater. Chem. A, 3(17), 9165-9170. [11]Yang, Z., Liu, M., Zhang, C., Tjiu, W. W., Liu, T., & Peng, H. (2013). Carbon nanotubes bridged with graphene nanoribbons and their use in high‐efficiency dye‐sensitized solar cells. Angewandte Chemie, 125(14), 4088-4091. [12]Yang, Z., Chen, T., He, R., Guan, G., Li, H., Qiu, L., & Peng, H. (2011). Aligned carbon nanotube sheets for the electrodes of organic solar cells. Advanced Materials, 23(45), 5436-5439. [13]Kim, B. J., Kim, D. H., Lee, Y. Y., Shin, H. W., Han, G. S., Hong, J. S., ... & Jung, H. S. (2015). Highly efficient and bending durable perovskite solar cells: toward a wearable power source. Energy & Environmental Science, 8(3), 916-921. [14]Habisreutinger, S. N., Leijtens, T., Eperon, G. E., Stranks, S. D., Nicholas, R. J., & Snaith, H. J. (2014). Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. Nano letters, 14(10), 5561-5568. [15]Correa-Baena, J. P., Abate, A., Saliba, M., Tress, W., Jacobsson, T. J., Grätzel, M., & Hagfeldt, A. (2017). The rapid evolution of highly efficient perovskite solar cells. Energy & Environmental Science, 10(3), 710-727. [16]Tan, H., Jain, A., Voznyy, O., Lan, X., De Arquer, F. P. G., Fan, J. Z., ... & Sargent, E. H. (2017). Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science, 355(6326), 722-726. [17]Deng, Y., Dong, Q., Bi, C., Yuan, Y., & Huang, J. (2016). Air‐stable, efficient mixed‐cation perovskite solar cells with Cu electrode by scalable fabrication of active layer. Advanced Energy Materials, 6(11), 1600372. [18]Kim, J. H., Williams, S. T., Cho, N., Chueh, C. C., & Jen, A. K. Y. (2015). Enhanced environmental stability of planar heterojunction perovskite solar cells based on blade‐coating. Advanced energy materials, 5(4), 1401229. [19]Yang, Z., Chueh, C. C., Zuo, F., Kim, J. H., Liang, P. W., & Jen, A. K. Y. (2015). High‐performance fully printable perovskite solar cells via blade‐coating technique under the ambient condition. Advanced Energy Materials, 5(13), 1500328. [20]Deng, Y., Peng, E., Shao, Y., Xiao, Z., Dong, Q., & Huang, J. (2015). Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers. Energy & Environmental Science, 8(5), 1544-1550. [21]Lian, J., Wang, Q., Yuan, Y., Shao, Y., & Huang, J. (2015). Organic solvent vapor sensitive methylammonium lead trihalide film formation for efficient hybrid perovskite solar cells. Journal of Materials Chemistry A, 3(17), 9146-9151. [22]Deng, Y., Wang, Q., Yuan, Y., & Huang, J. (2015). Vividly colorful hybrid perovskite solar cells by doctor-blade coating with perovskite photonic nanostructures. Materials Horizons, 2(6), 578-583. [23]Kim, T., Palmiano, E., Liang, R. Z., Hu, H., Murali, B., Kirmani, A. R., ... & Amassian, A. (2017). Hybrid tandem quantum dot/organic photovoltaic cells with complementary near infrared absorption. Applied physics letters, 110(22), 223903. [24]Munir, R., Sheikh, A. D., Abdelsamie, M., Hu, H., Yu, L., Zhao, K., ... & Amassian, A. (2017). Hybrid perovskite thin‐film photovoltaics: in situ diagnostics and importance of the precursor solvate phases. Advanced Materials, 29(2), 1604113. [25]Bush, K. A., Palmstrom, A. F., Zhengshan, J. Y., Boccard, M., Cheacharoen, R., Mailoa, J. P., ... & McGehee, M. D. (2017). 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nature Energy, 2(4), 1-7.
[26]Yang, M., Li, Z., Reese, M. O., Reid, O. G., Kim, D. H., Siol, S., ... & Zhu, K. (2017). Perovskite ink with wide processing window for scalable high-efficiency solar cells. Nature Energy, 2(5), 1-9. [27]Zhong, Y., Munir, R., Li, J., Tang, M. C., Niazi, M. R., Smilgies, D. M., ... & Amassian, A. (2018). Blade-coated hybrid perovskite solar cells with efficiency> 17%: an in situ investigation. ACS Energy Letters, 3(5), 1078-1085. [28]Li, C., Yin, J., Chen, R., Lv, X., Feng, X., Wu, Y., & Cao, J. (2019). Monoammonium porphyrin for blade-coating stable large-area perovskite solar cells with> 18% efficiency. Journal of the American Chemical Society, 141(15), 6345-6351. [29]Li, Z., Klein, T. R., Kim, D. H., Yang, M., Berry, J. J., Van Hest, M. F., & Zhu, K. (2018). Scalable fabrication of perovskite solar cells. Nature Reviews Materials, 3(4), 1-20. [30]Cheng, P., Bai, H., Zawacka, N. K., Andersen, T. R., Liu, W., Bundgaard, E., ... & Zhan, X. (2015). Roll‐Coated Fabrication of Fullerene‐Free Organic Solar Cells with Improved Stability. Advanced Science, 2(6), 1500096. [31]Schmidt, T. M., Larsen‐Olsen, T. T., Carlé, J. E., Angmo, D., & Krebs, F. C. (2015). Upscaling of perovskite solar cells: fully ambient roll processing of flexible perovskite solar cells with printed back electrodes. Advanced Energy Materials, 5(15), 1500569. [32]Valaski, R., Canestraro, C. D., Micaroni, L., Mello, R. M. Q., & Roman, L. S. (2007). Organic photovoltaic devices based on polythiophene films electrodeposited on FTO substrates. Solar energy materials and solar cells, 91(8), 684-688. [33]https://kknews.cc/science/e958le4.html [34]https://www.ossila.com/products/spiro-ometad [35]Saliba, M., Matsui, T., Seo, J. Y., Domanski, K., Correa-Baena, J. P., Nazeeruddin, M. K., ... & Grätzel, M. (2016). Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy & environmental science, 9(6), 1989-1997. [36]Wang, P., Zhang, X., Zhou, Y., Jiang, Q., Ye, Q., Chu, Z., ... & You, J. (2018). Solvent-controlled growth of inorganic perovskite films in dry environment for efficient and stable solar cells. Nature communications, 9(1), 1-7. [37]Dualeh, A., Moehl, T., Tétreault, N., Teuscher, J., Gao, P., Nazeeruddin, M. K., & Grätzel, M. (2014). Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells. ACS nano, 8(1), 362-373. [38]Xu, B., Zhu, Z., Zhang, J., Liu, H., Chueh, C. C., Li, X., & Jen, A. K. Y. (2017). 4‐Tert‐butylpyridine Free Organic Hole Transporting Materials for Stable and Efficient Planar Perovskite Solar Cells. Advanced Energy Materials, 7(19), 1700683. [39]Wang, S., Sina, M., Parikh, P., Uekert, T., Shahbazian, B., Devaraj, A., & Meng, Y. S. (2016). Role of 4-tert-butylpyridine as a hole transport layer morphological controller in perovskite solar cells. Nano letters, 16(9), 5594-5600. [40]Finkenauer, L. R. (2017). Ligand-mediated stabilization of low temperature metal eutectics and their use in composite systems (Doctoral dissertation, Carnegie Mellon University). [41]https://img1.wsimg.com/blobby/go/d9cbb170-6f7f-4ed0-b573-c965ac41b13b/Enli%20Tech_%E4%B8%80%E4%B8%8B%E5%B0%B1%E6%87%82%EF%BC%81%E5%A4%AA%E9%99%BD%E5%85%89%E6%A8%A1%E6%93%AC%E5%99%A8%E5%8E%9F%E7%90%86%E7%B0%A1%E4%BB%8B.pdf [42]Zekry, A., Shaker, A., & Salem, M. (2018). Solar cells and arrays: principles, analysis, and design. In Advances in renewable energies and power technologies (pp. 3-56). Elsevier. [43]Zhong, Y., Munir, R., Li, J., Tang, M. C., Niazi, M. R., Smilgies, D. M., ... & Amassian, A. (2018). Blade-coated hybrid perovskite solar cells with efficiency> 17%: an in situ investigation. ACS Energy Letters, 3(5), 1078-1085. [44]Kim, M., Kim, G. H., Lee, T. K., Choi, I. W., Choi, H. W., Jo, Y., ... & Kim, D. S. (2019). Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule, 3(9), 2179-2192. [45]Ding, J., Han, Q., Ge, Q. Q., Xue, D. J., Ma, J. Y., Zhao, B. Y., ... & Hu, J. S. (2019). Fully air-bladed high-efficiency perovskite photovoltaics. Joule, 3(2), 402-416. [46]Huang, S. H., Tian, K. Y., Huang, H. C., Li, C. F., Chu, W. C., Lee, K. M., ... & Su, W. F. (2020). Controlling the morphology and interface of the perovskite layer for scalable high-efficiency solar cells fabricated using green solvents and blade coating in an ambient environment. ACS Applied Materials & Interfaces, 12(23), 26041-26049. [47]Zhong, J. X., Wu, W. Q., Ding, L., & Kuang, D. B. (2021). Blade‐coating Perovskite Films with Diverse Compositions for Efficient Photovoltaics. Energy & Environmental Materials, 4(3), 277-283. [48]Wang, Z., Zeng, L., Zhang, C., Lu, Y., Qiu, S., Wang, C., ... & Mai, Y. (2020). Rational Interface Design and Morphology Control for Blade‐Coating Efficient Flexible Perovskite Solar Cells with a Record Fill Factor of 81%. Advanced Functional Materials, 30(32), 2001240.
|