[1] 李孟學,2017,“車牌模擬與車牌定位實作”,中華科技大學電子工程系研究所碩士論文。
[2] 趙洋,閔升鋒,李大舟,2022,“基於HSV空間顏色和紋理特徵的車牌定位算法研
究”,瀋陽化工大學學報,36卷,1期,pp. 90-95。
[3] 咸志杰,方芹芹,季偉偉,李海霞,2021,“基於車牌混和特徵的車牌定位算法研究”,
現代信息科技,5卷,2期,pp. 76-79, 84。
[4] 林語揚,2022,“基於卷積神經網路的傾斜矯正之車牌辨識模型”,國立虎尾科技大
學自動化工程系碩士倫文。
[5] 陳韋榤,2009,“應用快速廣義霍夫轉換於歪斜車牌定位與角度估算”,國立臺灣科
技大學高分子工程系碩士論文。
[6] Hitesh Rajput, Tanmoy Som and Soumitra Kar, 2016, “Using Radon Transform to
Recognize Skewed Images of Vehicular License Plates”, IEE Computer Society, Vol. 49, Issue:1, pp. 59-65, 14 January.
[7] N.N. Kamal and E. Tariq, 2021, “License Plate Tilt Correction: A Review”, Engineering and Technology Journal, Vol. 39, Part B, No. 01, pp. 101-116, 25 March.
[8] Bingyan Lin, Fengping He, et al, 2023, “License Plate Character Recognition with Lightweight Convolutional Neural Networks”, IEEE 2nd International Conference on
Electrical Engineering, Big Data and Algorithms (EEBDA), Changchun, China, 24-26
February.
[9] Qinglin Wu, Caiyun Xu, et al, 2022, “Research on License Plate Recognition System Based on OpenCV”, International Symposium on Computational Intelligence and Design (ISCID), Hangzhou, China, 01 February.
[10] Nobuyuki Otsu, 1979, “A Threshold Selection Method from Gray-Level Histograms”, IEEE Transactions on Systems, Man, and Cybernetics, Vol 9, Issue:1, pp. 62-66, January.
[11] A. Jain and S. Ansari, 1984, “Radon Transform Theory for Random Fields and Optimum Image Reconstruction from Noisy Projections”, ICASSP '84. IEEE International Conference on Acoustics, Speech, and Signal Processing, San Diego, CA, USA, 19-21
March.
[12] Kunihiko Fukushima, 1980, “Neocognitron: A self-organizing Neural Network Model for A Mechanism of Pattern Recognition Unaffected by Shift in Position”, Biological Cybernetics, Vol. 36, Issue:4, pp. 193-202, April.