|
1.Bean, J. C. (1994). Genetic algorithms and random keys for sequencing and optimization. ORSA journal on computing, 6(2), 154-160. 2.Cakici, E., & Mason, S. J. (2007). Parallel machine scheduling subject to auxiliary resource constraints. Production Planning and Control, 18(3), 217-225. 3.Chan, F. T. S., Wong, T. C., & Chan, L. Y. (2006). Flexible job-shop scheduling problem under resource constraints. International journal of production research, 44(11), 2071-2089. 4.Chen, T. R., Chang, T. S., Chen, C. W., & Kao, J. (1995). Scheduling for IC sort and test with preemptiveness via Lagrangian relaxation. IEEE Transactions on Systems, Man, and Cybernetics, 25(8), 1249-1256. 5.Chien, C. F., & Chen, C. H. (2007). Using genetic algorithms (GA) and a coloured timed Petri net (CTPN) for modelling the optimization-based schedule generator of a generic production scheduling system. International Journal of Production Research, 45(8), 1763-1789. 6.Dauzère-Pérès, S., & Paulli, J. (1997). An integrated approach for modeling and solving the general multiprocessor job-shop scheduling problem using tabu search. Annals of Operations Research, 70, 281-306. 7.Demir, Y., & İşleyen, S. K. (2013). Evaluation of mathematical models for flexible job-shop scheduling problems. Applied Mathematical Modelling, 37(3), 977-988. 8.Demir, Y., & İşleyen, S. K. (2014). An effective genetic algorithm for flexible job-shop scheduling with overlapping in operations. International Journal of Production Research, 52(13), 3905-3921. 9.Gao, J., Gen, M., Sun, L., & Zhao, X. (2007). A hybrid of genetic algorithm and bottleneck shifting for multiobjective flexible job shop scheduling problems. Computers & Industrial Engineering, 53(1), 149-162. 10.Garey, M. R., Johnson, D. S., & Sethi, R. (1976). The complexity of flowshop and jobshop scheduling. Mathematics of operations research, 1(2), 117-129. 11.Gen, M., Tsujimura, Y., & Kubota, E. (1994, October). Solving job-shop scheduling problems by genetic algorithm. In Proceedings of IEEE International Conference on Systems, Man and Cybernetics (Vol. 2, pp. 1577-1582). IEEE. 12.Ho, N. B., Tay, J. C., & Lai, E. M. K. (2007). An effective architecture for learning and evolving flexible job-shop schedules. European Journal of Operational Research, 179(2), 316-333. 13.Holland, J. H. (1992). Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. MIT press. 14.Hong, T. Y., Chien, C. F., Wang, H. K., & Guo, H. Z. (2018). A two-phase decoding genetic algorithm for TFT-LCD array photolithography stage scheduling problem with constrained waiting time. Computers & Industrial Engineering, 125, 200-211. 15.Hur, Y., Bard, J. F., & Chacon, R. (2019). Hierarchy machine set-up for multi-pass lot scheduling at semiconductor assembly and test facilities. International Journal of Production Research, 57(14), 4351-4370. 16.Li, X., & Gao, L. (2016). An effective hybrid genetic algorithm and tabu search for flexible job shop scheduling problem. International Journal of Production Economics, 174, 93-110. 17.Mousakhani, M. (2013). Sequence-dependent setup time flexible job shop scheduling problem to minimise total tardiness. International Journal of Production Research, 51(12), 3476-3487. 18.Müller, D., & Kress, D. (2022). Filter-and-fan approaches for scheduling flexible job shops under workforce constraints. International Journal of Production Research, 60(15), 4743-4765. 19.Norman, B. A., & Bean, J. C. (1999). A genetic algorithm methodology for complex scheduling problems. Naval Research Logistics (NRL), 46(2), 199-211. 20.Osman, I. H., & Kelly, J. P. (1996). Meta-heuristics: an overview. Meta-heuristics, 1-21. 21.Pinedo, M. (2012). Scheduling: Theory, Algorithms, and Systems. New York: Springer. 22.Shen, L., Dauzère-Pérès, S., & Neufeld, J. S. (2018). Solving the flexible job shop scheduling problem with sequence-dependent setup times. European Journal of Operational Research, 265(2), 503-516. 23.Tavakkoli-Moghaddam, R., Taheri, F., Bazzazi, M., Izadi, M., & Sassani, F. (2009). Design of a genetic algorithm for bi-objective unrelated parallel machines scheduling with sequence-dependent setup times and precedence constraints. Computers & Operations Research, 36(12), 3224-3230. 24.Tay, J. C., & Ho, N. B. (2008). Evolving dispatching rules using genetic programming for solving multi-objective flexible job-shop problems. Computers & Industrial Engineering, 54(3), 453-473. 25.Uzsoy, R., Martin-Vega, L. A., Lee, C. Y., & Leonard, P. A. (1991). Production scheduling algorithms for a semiconductor test facility. IEEE transactions on semiconductor manufacturing, 4(4), 270-280. 26.Wu, J. Z., & Chien, C. F. (2008). Modeling semiconductor testing job scheduling and dynamic testing machine configuration. Expert Systems with Applications, 35(1-2), 485-496. 27.Wu, R., Li, Y., Guo, S., & Xu, W. (2018). Solving the dual-resource constrained flexible job shop scheduling problem with learning effect by a hybrid genetic algorithm. Advances in Mechanical Engineering, 10(10), 1-14.
|