|
[1] N.P. Subramanian, X. Li, V. Nallathambi, S.P. Kumaraguru, H. Colon-Mercado, G. Wu, J.-W. Lee, B.N. Popov, Nitrogen-modified carbon-based catalysts for oxygen reduction reaction in polymer electrolyte membrane fuel cells, Journal of Power Sources, 188 (2009) 38-44. [2] H.A. Firouzjaie, W.E. Mustain, Catalytic advantages, challenges, and priorities in alkaline membrane fuel cells, ACS Publications, 2019, pp. 225-234. [3] S. Gottesfeld, D.R. Dekel, M. Page, C. Bae, Y. Yan, P. Zelenay, Y.S. Kim, Anion exchange membrane fuel cells: Current status and remaining challenges, Journal of Power Sources, 375 (2018) 170-184. [4] R. Jasinski, A New Fuel Cell Cathode Catalyst, 1964. [5] J. Bai, Q. Zhu, Z. Lv, H. Dong, J. Yu, L. Dong, Nitrogen-doped graphene as catalysts and catalyst supports for oxygen reduction in both acidic and alkaline solutions, International Journal of Hydrogen Energy, 38 (2013) 1413-1418. [6] Z. Yao, H. Nie, Z. Yang, X. Zhou, Z. Liu, S. Huang, Catalyst-free synthesis of iodine-doped graphene via a facile thermal annealing process and its use for electrocatalytic oxygen reduction in an alkaline medium, Chem Commun (Camb), 48 (2012) 1027-1029. [7] M.M. Hbssen, K. Artyushkova, P. Atanassov, A. Serov, Synthesis and characterization of high performing Fe-N-C catalyst for oxygen reduction reaction (ORR) in Alkaline Exchange Membrane Fuel Cells, Journal of Power Sources, 375 (2018) 214-221. [8] R. Sibul, E. Kibena‐Põldsepp, S. Ratso, M. Kook, M.T. Sougrati, M. Käärik, M. Merisalu, J. Aruväli, P. Paiste, A. Treshchalov, J. Leis, V. Kisand, V. Sammelselg, S. Holdcroft, F. Jaouen, K. Tammeveski, Iron‐ and Nitrogen‐Doped Graphene‐Based Catalysts for Fuel Cell Applications, ChemElectroChem, 7 (2020) 1739-1747. [9] G. Wu, P. Zelenay, Nanostructured Nonprecious Metal Catalysts for Oxygen Reduction Reaction, Accounts of Chemical Research, 46 (2013) 1878-1889. [10] G. A., M. K., M. X., S. D. A., D. J. R., Fuel Cell Studies on a Non-Noble Metal Catalyst Prepared by a Template-Assisted Synthesis Route, Journal of The Electrochemical Society, 155 (2008) 953-957. [11] E. Proietti, F. Jaouen, M. Lefevre, N. Larouche, J. Tian, J. Herranz, J.P. Dodelet, Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells, Nat Commun, 2 (2011) 416. [12] G. Wu, A. Santandreu, W. Kellogg, S. Gupta, O. Ogoke, H. Zhang, H.L. Wang, L. Dai, Carbon nanocomposite catalysts for oxygen reduction and evolution reactions: From nitrogen doping to transition-metal addition, Nano Energy, 29 (2016) 83-110. [13] M. Page, A. Amel, C. Azra, A. Kitayev, C. Ben-Yehuda, Ten Years on: Evolution, Status and Future of Alkaline Exchange Membrane Fuel Cell Systems, ECS Meeting Abstracts, IOP Publishing, 2019, pp. 1829. [14] I. EG&G Technical Services, Fuel Cell Handbook, U.S. Department of Energy2004. [15] D.R. Dekel, Review of cell performance in anion exchange membrane fuel cells, Journal of Power Sources, 375 (2018) 158-169. [16] H. Lyndon B. Johnson Space Center, Texas, Alternative Electrochemical Systems for Ozonation of Water, NASA Tech Briefs, (2003) 24-25. [17] A. Hermann, T. Chaudhuri, P. Spagnol, Bipolar plates for PEM fuel cells: A review, International Journal of Hydrogen Energy, 30 (2005) 1297-1302. [18] H.M. Fruehwald, O.V. Zenkina, E.B. Easton, A new spin on electrochemistry in the undergraduate lab, Chemistry Teacher International, 4 (2022) 23-37. [19] G. Lu, H. Yang, Y. Zhu, T. Huggins, Z.J. Ren, Z. Liu, W. Zhang, Synthesis of a conjugated porous Co(ii) porphyrinylene–ethynylene framework through alkyne metathesis and its catalytic activity study, Journal of Materials Chemistry A, 3 (2015) 4954-4959. [20] A.M. Zainoodin, S.K. Kamarudin, W.R.W. Daud, Electrode in direct methanol fuel cells, International Journal of Hydrogen Energy, 35 (2010) 4606-4621. [21] R. Jasinski, A New Fuel Cell Cathode Catalyst, Nature, 201 (1964) 1212-1213. [22] R. Kumar, L. Singh, A.W. Zularisam, Enhanced oxygen reduction reaction in air-cathode microbial fuel cells using flower-like Co3O4 as an efficient cathode catalyst, International Journal of Hydrogen Energy, 42 (2017) 19287-19295. [23] C. Chen, Y. Kang, Z. Huo, Z. Zhu, W. Huang, H.L. Xin, J.D. Snyder, D. Li, J.A. Herron, M. Mavrikakis, M. Chi, K.L. More, Y. Li, N.M. Markovic, G.A. Somorjai, P. Yang, V.R. Stamenkovic, Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces, Science, 343 (2014) 1339-1343. [24] M. Lefevre, E. Proietti, F. Jaouen, J.P. Dodelet, Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells, Science, 324 (2009) 71-74. [25] G. Wu, K.L. More, C.M. Johnston, P. Zelenay, High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt, Science, 332 (2011) 443-447. [26] M.W. J. Shui, F. Du, L. Dai, N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells, Science Advances, 1 (2015) 1-7. [27] L. Yang, N. Larouche, R. Chenitz, G. Zhang, M. Lefèvre, J.P. Dodelet, Activity, Performance, and Durability for the Reduction of Oxygen in PEM Fuel Cells, of Fe/N/C Electrocatalysts Obtained from the Pyrolysis of Metal-Organic-Framework and Iron Porphyrin Precursors, Electrochimica Acta, 159 (2015) 184-197. [28] A. Zitolo, V. Goellner, V. Armel, M.T. Sougrati, T. Mineva, L. Stievano, E. Fonda, F. Jaouen, Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials, Nat Mater, 14 (2015) 937-942. [29] Q. Jia, N. Ramaswamy, H. Hafiz, U. Tylus, K. Strickland, G. Wu, B. Barbiellini, A. Bansil, E.F. Holby, P. Zelenay, S. Mukerjee, Experimental Observation of Redox-Induced Fe-N Switching Behavior as a Determinant Role for Oxygen Reduction Activity, ACS Nano, 9 (2015) 12496-12505. [30] X. Li, Y. Yao, J. Liu, Z. Zou, Highly microporous nitrogen doped graphene-like carbon material as an efficient fuel cell catalyst, International Journal of Hydrogen Energy, 42 (2017) 19903-19912. [31] L. Zhang, G. Xia, Z. Guo, X. Li, D. Sun, X. Yu, Boron and nitrogen co-doped porous carbon nanotubes webs as a high-performance anode material for lithium ion batteries, International Journal of Hydrogen Energy, 41 (2016) 14252-14260. [32] C. Zhang, N. Mahmood, H. Yin, F. Liu, Y. Hou, Synthesis of phosphorus-doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries, Adv Mater, 25 (2013) 4932-4937. [33] J. Liu, P. Song, Z. Ning, W. Xu, Recent Advances in Heteroatom-Doped Metal-Free Electrocatalysts for Highly Efficient Oxygen Reduction Reaction, Electrocatalysis, 6 (2015) 132-147. [34] J. Yan, H. Meng, F. Xie, X. Yuan, W. Yu, W. Lin, W. Ouyang, D. Yuan, Metal free nitrogen doped hollow mesoporous graphene-analogous spheres as effective electrocatalyst for oxygen reduction reaction, Journal of Power Sources, 245 (2014) 772-778. [35] H.T. Chung, P. Zelenay, A simple synthesis of nitrogen-doped carbon micro- and nanotubes, Chem Commun (Camb), 51 (2015) 13546-13549. [36] J. Wu, D. Zhang, Y. Wang, Y. Wan, B. Hou, Catalytic activity of graphene–cobalt hydroxide composite for oxygen reduction reaction in alkaline media, Journal of Power Sources, 198 (2012) 122-126. [37] Y. Chan, Y. Dai, R. Li, J. Zou, G. Tian, H. Fu, Low-temperature synthesized nitrogen-doped iron/iron carbide/partly-graphitized carbon as stable cathode catalysts for enhancing bioelectricity generation, Carbon, 89 (2015) 8-19. [38] M. Qiao, C. Tang, G. He, K. Qiu, R. Binions, I.P. Parkin, Q. Zhang, Z. Guo, M.M. Titirici, Graphene/nitrogen-doped porous carbon sandwiches for the metal-free oxygen reduction reaction: conductivity versus active sites, Journal of Materials Chemistry A, 4 (2016) 12658-12666. [39] H. Jiang, Y. Yao, Y. Zhu, Y. Liu, Y. Su, X. Yang, C. Li, Iron Carbide Nanoparticles Encapsulated in Mesoporous Fe-N-Doped Graphene-Like Carbon Hybrids as Efficient Bifunctional Oxygen Electrocatalysts, ACS Appl Mater Interfaces, 7 (2015) 21511-21520. [40] X. Zhang, Y. Wang, Y. Du, M. Qing, F. Yu, Z.Q. Tian, P.K. Shen, Highly active N, S co-doped hierarchical porous carbon nanospheres from green and template-free method for super capacitors and oxygen reduction reaction, Electrochimica Acta, 318 (2019) 272-280. [41] X. Zhang, S. Yao, P. Chen, Y. Wang, D. Lyu, F. Yu, M. Qing, Z.Q. Tian, P.K. Shen, Revealing the dependence of active site configuration of N doped and N, S-co-doped carbon nanospheres on six-membered heterocyclic precursors for oxygen reduction reaction, Journal of Catalysis, 389 (2020) 677-689. [42] W. Yang, S. Tang, Q. Huang, Q. Zhang, Z. Tang, S. Yang, Highly effective Fe–N–C electrocatalysts toward oxygen reduction reaction originated from 2, 6-diaminopyridine, Journal of Materials Science: Materials in Electronics, 32 (2021) 10349-10358.
|