|
[1] Cheng, K.-H., & Tsai, C.-C. (2019). A case study of immersive virtual field trips in an elementary classroom: Students’ learning experience and teacher-student interaction behaviors. Computers & Education, 140, 103600. doi: 10.1016/j.compedu.2019.103600. [2] Chen, Y.-C., Hwang, R.-H., & Wang, C.-Y. (2012). Development and evaluation of a Web 2.0 annotation system as a learning tool in an e-learning environment. Computers & Education, 58(4), 1094–1105. doi: 10.1016/j.compedu.2011.12.017. [3] Hwang, G.-J., Sung, H.-Y., & Yen, Y.-F. (2014). Development of a Contextual Decision-Making Game for Improving Students Learning Performance in a Health Education Course. 2014 International Conference of Educational Innovation through Technology. doi: 10.1109/eitt.2014.17. [4] Parsazadeh, N., Ali, R., & Rezaei, M. (2018). A framework for cooperative and interactive mobile learning to improve online information evaluation skills. Computers & Education, 120, 75–89. doi: 10.1016/j.compedu.2018.01.010. [5] López-Faican, L., & Jaen, J. (2020). EmoFindAR: Evaluation of a mobile multiplayer augmented reality game for primary school children. Computers & Education, 149, 103814. doi: 10.1016/j.compedu.2020.103814. [6] Abeysekera, L., & Dawson, P. (2014). Motivation and cognitive load in the flipped classroom: definition, rationale and a call for research. Higher Education Research & Development, 34(1), 1–14. doi: 10.1080/07294360.2014.934336. [7] Lai, C.-L., & Hwang, G.-J. (2016). A self-regulated flipped classroom approach to improving students’ learning performance in a mathematics course. Computers & Education, 100, 126–140. doi: 10.1016/j.compedu.2016.05.006. [8] Chiou, C.-C., Tien, L.-C., & Tang, Y.-C. (2020). Applying structured computer-assisted collaborative concept mapping to flipped classroom for hospitality accounting. Journal of Hospitality, Leisure, Sport & Tourism Education, 26, 100243. doi: 10.1016/j.jhlste.2020.100243. [9] IRS即時反饋系統-網奕資訊. https://www.habook.com.tw/eTeaching/products.aspx?BookNo=IRS_01. [10] Wang, A. I. (2015). The wear out effect of a game-based student response system. Computers & Education, 82, 217–227. doi: 10.1016/j.compedu.2014.11.004. [11] Zuvio-大學課堂教學互動工具.(2013). https://www.zuvio.com.tw/. [12] Tsai, H.-H., Chang, C.-T., Hou, X.-Y., Yong, Y.-M., Chiou, K.-C., & Yu, P.-T. (2019). Interactive student response system with iBeacon and web-socket for flipped classroom learning. Journal of Computing in Higher Education, 31(2), 340–361. doi: 10.1007/s12528-019-09226-x. [13] Tsai, H.-H., & Chang, Y.-C. (2017). Facial expression recognition using a combination of multiple facial features and support vector machine. Soft Computing, 22(13), 4389–4405. doi: 10.1007/s00500-017-2634-3. [14] Galarza, Eddie E., et al. “Real Time Driver Drowsiness Detection Based on Driver’s Face Image Behavior Using a System of Human Computer Interaction Implemented in a Smartphone.” Proceedings of the International Conference on Information Technology & Systems (ICITS 2018) Advances in Intelligent Systems and Computing, 2018, pp. 563–572., doi:10.1007/978-3-319-73450-7_53. [15] Faria, D. R., Vieira, M., Faria, F. C., & Premebida, C. (2017). Affective facial expressions recognition for human-robot interaction. 2017 26th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN). doi: 10.1109/roman.2017.8172395. [16] Chang, W.-J., Schmelzer, M., Kopp, F., Hsu, C.-H., Su, J.-P., Chen, L.-B., & Chen, M.-C. (2019). A Deep Learning Facial Expression Recognition based Scoring System for Restaurants. 2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC). doi: 10.1109/icaiic.2019.8668998. [17] Sajjad, M., Nasir, M., Ullah, F. U. M., Muhammad, K., Sangaiah, A. K., & Baik, S. W. (2019). Raspberry Pi assisted facial expression recognition framework for smart security in law-enforcement services. Information Sciences, 479, 416–431. doi: 10.1016/j.ins.2018.07.027. [18] Sebastian, A. G., Singh, S., Manikanta, P. B. T., Ashwin, T. S., & Reddy, G. R. M. (2018). Multimodal Group Activity State Detection for Classroom Response System Using Convolutional Neural Networks. Advances in Intelligent Systems and Computing Recent Findings in Intelligent Computing Techniques, 245–251. doi: 10.1007/978-981-10-8639-7_25. [19] Neto, L. D. S. B., Maike, V. R. M. L., Koch, F. L., Baranauskas, M. C. C., Rocha, A. D. R., & Goldenstein, S. K. (2015). A Wearable Face Recognition System Built into a Smartwatch and the Visually Impaired User. Proceedings of the 17th International Conference on Enterprise Information Systems. doi: 10.5220/0005370200050012. [20] Sajjad, M., Nasir, M., Muhammad, K., Khan, S., Jan, Z., Sangaiah, A. K., … Baik, S. W. (2017). Raspberry Pi assisted face recognition framework for enhanced law-enforcement services in smart cities. Future Generation Computer Systems. doi: 10.1016/j.future.2017.11.013. [21] Liu, X., Geng, J., Ling, H., & Cheung, Y.-M. (2019). Attention guided deep audio-face fusion for efficient speaker naming. Pattern Recognition, 88, 557–568. doi: 10.1016/j.patcog.2018.12.011. [22] Surekha, B., Nazare, K. J., Raju, S. V., & Dey, N. (2016). Attendance Recording System Using Partial Face Recognition Algorithm. Intelligent Techniques in Signal Processing for Multimedia Security Studies in Computational Intelligence, 293–319. doi: 10.1007/978-3-319-44790-2_14. [23] Son, N. T., Chi, L. P., Lam, P. T., & Dinh, T. V. (2019). Combination of Facial Recognition and Interaction with Academic Portal in Automatic Attendance System. Proceedings of the 2019 8th International Conference on Software and Computer Applications - ICSCA 19. doi: 10.1145/3316615.3316638. [24] Panditpautra, V., Goswami, A., Aishwarya, K., & Ambadekar, S. (2019). Biometric Attendance Management System Using Raspberry Pi. SSRN Electronic Journal. doi: 10.2139/ssrn.3368163. [25] Lee, S.-H., Sohn, M.-K., Kim, D.-J., Kim, B., & Kim, H. (2013). Smart TV interaction system using face and hand gesture recognition. 2013 IEEE International Conference on Consumer Electronics (ICCE). doi: 10.1109/icce.2013.6486845. [26] Rautaray, S. S., & Agrawal, A. (2011). Interaction with virtual game through hand gesture recognition. 2011 International Conference on Multimedia, Signal Processing and Communication Technologies. doi: 10.1109/mspct.2011.6150485. [27] Radkowski, R. & Stritzke, C.. (2012). Interactive hand gesture-based assembly for augmented reality applications. ACHI 2012 - 5th International Conference on Advances in Computer-Human Interactions. 303-308. [28] Bergh, M. V. D., Koller-Meier, E., Bosche, F., & Gool, L. V. (2009). Haarlet-based hand gesture recognition for 3D interaction. 2009 Workshop on Applications of Computer Vision (WACV). doi: 10.1109/wacv.2009.5403103. [29] Bellarbi, A., Benbelkacem, S., Zenati-Henda, N., & Belhocine, M. (2011). Hand gesture interaction using color-based method for tabletop interfaces. 2011 IEEE 7th International Symposium on Intelligent Signal Processing. doi: 10.1109/wisp.2011.6051717. [30] Haria, A., Subramanian, A., Asokkumar, N., Poddar, S., & Nayak, J. S. (2017). Hand Gesture Recognition for Human Computer Interaction. Procedia Computer Science, 115, 367–374. doi: 10.1016/j.procs.2017.09.092. [31] Canal, G., Escalera, S., & Angulo, C. (2016). A real-time Human-Robot Interaction system based on gestures for assistive scenarios. Computer Vision and Image Understanding, 149, 65–77. doi: 10.1016/j.cviu.2016.03.004. [32] Si, J., Lin, J., Jiang, F., & Shen, R. (2019). Hand-raising gesture detection in real classrooms using improved R-FCN. Neurocomputing, 359, 69–76. doi: 10.1016/j.neucom.2019.05.031. [33] Introduction to WebSockets : https://linode.com/docs/development/introduction-to-websockets/. [34] WebSocket通訊協定簡介 : https://blog.gtwang.org/web-development/websocket-protocol/. [35] Chart.js : https://www.chartjs.org/. [36]李宏毅 — Backpropagation : https://sakura-gh.github.io/ML-notes/ML-notes-html/9_Backpropagation.html. [37] Tensorflow Github : https://github.com/tensorflow/tensorflow. [38] Tensorflow : https://www.tensorflow.org/. [39] TensorFlow基本使用與分散式概念 : https://k2r2bai.com/2017/04/10/tensorflow/introduction/. [40] Tensorflow Lite : https://www.tensorflow.org/lite. [41] Tensorflow.js : https://www.tensorflow.org/js. [42] Keras Github : https://github.com/keras-team/keras. [43] OpenCv : https://opencv.org/. [44] Imgaug Github : https://github.com/aleju/imgaug. [45] LabelImg : https://github.com/tzutalin/labelImg. [46] 深度學習系列: 什麼是AP/mAP : https://medium.com/@chih.sheng.huang821/%E6%B7%B1%E5%BA%A6%E5%AD%B8%E7%BF%92%E7%B3%BB%E5%88%97-%E4%BB%80%E9%BA%BC%E6%98%AFap-map-aaf089920848. [47] 機器/深度學習 : 物件偵測 Non-Maximum Suppression (NMS) : https://medium.com/@chih.sheng.huang821/%E6%A9%9F%E5%99%A8-%E6%B7%B1%E5%BA%A6%E5%AD%B8%E7%BF%92-%E7%89%A9%E4%BB%B6%E5%81%B5%E6%B8%AC-non-maximum-suppression-nms-aa70c45adffa. [48] Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You Only Look Once: Unified, Real-Time Object Detection. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). doi: 10.1109/cvpr.2016.91. [49] 深度學習-物件偵測:You Only Look Once (YOLO) : https://medium.com/@chih.sheng.huang821/%E6%B7%B1%E5%BA%A6%E5%AD%B8%E7%BF%92-%E7%89%A9%E4%BB%B6%E5%81%B5%E6%B8%AC-you-only-look-once-yolo-4fb9cf49453c. [50] Real-time Object Detection with YOLO, YOLOv2 and now YOLOv3 : https://medium.com/@jonathan_hui/real-time-object-detection-with-yolo-yolov2-28b1b93e2088. [51] Redmon, J., & Farhadi, A. (2017). YOLO9000: Better, Faster, Stronger. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). doi: 10.1109/cvpr.2017.690. [52] Redmon, Joseph & Farhadi, Ali. (2018). YOLOv3: An Incremental Improvement. [53] Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324. doi: 10.1109/5.726791. [54] 卷積神經網路的運作原理 : https://brohrer.mcknote.com/zh-Hant/how_machine_learning_works/how_convolutional_neural_networks_work.html. [55] 入門深度學習 — 2 : https://medium.com/@syshen/%E5%85%A5%E9%96%80%E6%B7%B1%E5%BA%A6%E5%AD%B8%E7%BF%92-2-d694cad7d1e5. [56] 卷積神經網絡介紹 : https://medium.com/jameslearningnote/%E8%B3%87%E6%96%99%E5%88%86%E6%9E%90-%E6%A9%9F%E5%99%A8%E5%AD%B8%E7%BF%92-%E7%AC%AC5-1%E8%AC%9B-%E5%8D%B7%E7%A9%8D%E7%A5%9E%E7%B6%93%E7%B6%B2%E7%B5%A1%E4%BB%8B%E7%B4%B9-convolutional-neural-network-4f8249d65d4f. [57] 機器學習\統計方法: 模型評估-驗證指標(validation index) : https://medium.com/@chih.sheng.huang821/%E6%A9%9F%E5%99%A8%E5%AD%B8%E7%BF%92-%E7%B5%B1%E8%A8%88%E6%96%B9%E6%B3%95-%E6%A8%A1%E5%9E%8B%E8%A9%95%E4%BC%B0-%E9%A9%97%E8%AD%89%E6%8C%87%E6%A8%99-b03825ff0814. [58] Oxford Hand Dataset : http://www.robots.ox.ac.uk/~vgg/data/hands/. [59] VIVA Hand Detection Dataset : http://cvrr.ucsd.edu/vivachallenge/index.php/hands/hand-detection/. [60] YOLO object detection with OpenCV. https://www.pyimagesearch.com/2018/11/12/yolo-object-detection-with-opencv/. [61] OpenCV Face Recognition. https://www.pyimagesearch.com/2018/09/24/opencv-face-recognition/.
|