|
[1] O'gorman, J., & Humphreys, H. (2012). Application of copper to prevent and control infection. Where are we now? Journal of Hospital Infection, 81(4), 217-223. [2] McNeil, S. E. (2005). Nanotechnology for the biologist. Journal of leukocyte biology, 78(3), 585-594. [3] Schmidt, O. G., Deneke, C., Nakamura, Y., Zapf-Gottwick, R., Mueller, C., & Jin-Phillipp, N. Y. (2002). Nanotechnology-bottom-up meets top-down. In Advances in Solid State Physics (pp. 231-240). Springer, Berlin, Heidelberg. [4] Chakraborty, S., Jo, B. W., & Yoon, Y. S. (2020). Development of nano cement concrete by top-down and bottom-up nanotechnology concept. In Smart Nanoconcretes and Cement-Based Materials. [5] Goel, S., Luo, X., Agrawal, A., & Reuben, R. L. (2015). Diamond machining of silicon: a review of advances in molecular dynamics simulation. International Journal of Machine Tools and Manufacture, 88, 131-164. [6] Schuelke, T., & Grotjohn, T. A. (2013). Diamond polishing. Diamond and Related Materials, 32, 17-26. [7] Li, J., Liu, B., Luo, H., Fang, Q., Liu, Y., & Liu, Y. (2016). A molecular dynamics investigation into plastic deformation mechanism of nanocrystalline copper for different nanoscratching rates. Computational Materials Science, 118, 66-76. [8] Zhou, K., Liu, B., Shao, S., & Yao, Y. (2017). Molecular dynamics simulations of tension–compression asymmetry in nanocrystalline copper. Physics Letters A, 381(13), 1163-1168. [9] Li, J., Fang, Q., Liu, Y., & Zhang, L. (2014). A molecular dynamics investigation into the mechanisms of subsurface damage and material removal of monocrystalline copper subjected to nanoscale high speed grinding. Applied Surface Science, 303, 331-343. [10] Shen, B., & Sun, F. (2010). Molecular dynamics investigation on the atomic-scale indentation and friction behaviors between diamond tips and copper substrate. Diamond and Related Materials, 19(7-9), 723-728. [11] Zhang, J., Sun, T., Yan, Y., & Liang, Y. (2009). Molecular dynamics study of scratching velocity dependency in AFM-based nanometric scratching process. Materials Science and Engineering: A, 505(1-2), 65-69. [12] Kadau, K., Lomdahl, P. S., Holian, B. L., Germann, T. C., Kadau, D., Entel, P., ... & Westerhoff, F. (2004). Molecular-dynamics study of mechanical deformation in nano-crystalline aluminum. Metallurgical and materials transactions A, 35(9), 2719-2723. [13] Liu, F., Zou, R., Hu, N., Ning, H., Yan, C., Liu, Y., ... & Mo, F. (2018). Understanding the mechanical properties and deformation behavior of 3-D graphene-carbon nanotube structures. Materials & Design, 160. [14] Jeon, J. B., Lee, B. J., & Chang, Y. W. (2011). Molecular dynamics simulation study of the effect of grain size on the deformation behavior of nanocrystalline body-centered cubic iron. Scripta Materialia, 64(6), 494-497. [15] Chang, S. Y., & Chang, T. K. (2007). Grain size effect on nanomechanical properties and deformation behavior of copper under nanoindentation test. Journal of applied physics, 101(3), 033507. [16] Li, Z. D., Lin, C. G., & Cui, S. (2014). Development of research and application of copper alloys with high strength and high conductivity. In Advanced Materials Research (Vol. 1053, pp. 61-68). Trans Tech Publications Ltd. [17] Davis, J. R. (Ed.). (2001). Copper and copper alloys. ASM international. [18] Li, M., & Zinkle, S. J. (2012). Physical and mechanical properties of copper and copper alloys. [19] Pauling, L. (1988). General chemistry. Courier Corporation. [20] Doi, T. K., Sano, Y., Kurowaka, S., Aida, H., Ohnishi, O., Uneda, M., & Ohyama, K. (2014). Novel chemical mechanical polishing/plasma-chemical vaporization machining (CMP/P-CVM) combined processing of hard-to-process crystals based on innovative concepts. Sensors and Materials, 26(6), 403-415. [21] Guoshun, P., Ning, W., Hua, G., & Yan, L. (2012). An empirical approach to explain the material removal rate for copper chemical mechanical polishing. Tribology international, 47, 142-144. [22] Lee, H., & Jeong, H. (2011). A wafer-scale material removal rate profile model for copper chemical mechanical planarization. International Journal of Machine Tools and Manufacture, 51(5), 395-403. [23] He, X., Chen, Y., Zhao, H., Sun, H., Lu, X., & Liang, H. (2013). Y2O3 nanosheets as slurry abrasives for chemical-mechanical planarization of copper. Friction, 1(4), 327-332. [24] Ye, Y., Biswas, R., Morris, J. R., Bastawros, A., & Chandra, A. (2002). Simulation of nanoscale polishing of copper with molecular dynamics. MRS Online Proceedings Library (OPL), 732. [25] Shi, J., Chen, J., Fang, L., Sun, K., Sun, J., & Han, J. (2018). Atomistic scale nanoscratching behavior of monocrystalline Cu influenced by water film in CMP process. Applied Surface Science, 435, 983-992. [26] Wen, J., Ma, T., Zhang, W., Van Duin, A. C., Van Duin, D. M., Hu, Y., & Lu, X. (2019). Atomistic insights into Cu chemical mechanical polishing mechanism in aqueous hydrogen peroxide and glycine: ReaxFF reactive molecular dynamics simulations. The Journal of Physical Chemistry C, 123(43), 26467-26474. [27] Zhu, J., Zhou, Q., Huang, Y., Zhou, B., & Wang, J. (2021). Surface deformation of single crystalline copper on different nano-scratching paths. Journal of Materials Science, 56(17), 10640-10652. [28] Goli, P., Ning, H., Li, X., Lu, C. Y., Novoselov, K. S., & Balandin, A. A. (2014). Thermal properties of graphene–copper–graphene heterogeneous films. Nano letters, 14(3), 1497-1503. [29] Khanna, P. K., Gaikwad, S., Adhyapak, P. V., Singh, N., & Marimuthu, R. (2007). Synthesis and characterization of copper nanoparticles. Materials Letters, 61(25), 4711-4714. [30] Sumigawa, T., Shishido, T., Murakami, T., Iwasaki, T., & Kitamura, T. (2010). Evaluation on plastic deformation property of copper nano-film by nano-scale cantilever specimen. Thin solid films, 518(21), 6040-6047. [31] Cioffi, N., Torsi, L., Ditaranto, N., Tantillo, G., Ghibelli, L., Sabbatini, L., ... & Traversa, E. (2005). Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chemistry of Materials, 17(21), 5255-5262. [32] Zhang, K., Rossi, C., Tenailleau, C., Alphonse, P., & Chane-Ching, J. Y. (2007). Synthesis of large-area and aligned copper oxide nanowires from copper thin film on silicon substrate. Nanotechnology, 18(27), 275607. [33] Ein-Eli, Y., & Starosvetsky, D. (2007). Review on copper chemical–mechanical polishing (CMP) and post-CMP cleaning in ultra large system integrated (ULSI)—An electrochemical perspective. Electrochimica Acta, 52(5), 1825-1838. [34] Choi, K. K., & Rhee, S. W. (2001). Chemical vapor deposition of copper film from hexafluoroacetyl-acetonateCu (I) vinylcyclohexane. Thin Solid Films, 397(1-2), 70-77. [35] Hashemipour, H., Zadeh, M. E., Pourakbari, R., & Rahimi, P. (2011). Investigation on synthesis and size control of copper nanoparticle via electrochemical and chemical reduction method. International Journal of Physical Sciences, 6(18), 4331-4336. [36] Steigerwald, J. M., Murarka, S. P., Gutmann, R. J., & Duquette, D. J. (1995). Chemical processes in the chemical mechanical polishing of copper. Materials Chemistry and Physics, 41(3), 217-228. [37] Bolesta, A. V., & Fomin, V. M. (2014). Molecular dynamics simulation of polycrystalline copper. Journal of Applied Mechanics and Technical Physics, 55(5), 800-811. [38] Liu, H., Hao, M., Tao, M., Sun, Y., & Xie, W. (2019). Molecular dynamics simulation of dislocation evolution and surface mechanical properties on polycrystalline copper. Applied Physics A, 125(3), 1-13. [39] Ma, Y., Zhang, S., Xu, Y., Liu, X., & Luo, S. N. (2020). Effects of temperature and grain size on deformation of polycrystalline copper–graphene nanolayered composites. Physical Chemistry Chemical Physics, 22(8), 4741-4748. [40] Sun, K., Fang, L., Yan, Z., & Sun, J. (2013). Atomistic scale tribological behaviors in nano-grained and single crystal copper systems. Wear, 303(1-2), 191-201. [41] Kareer, A., Hou, X. D., Jennett, N. M., & Hainsworth, S. V. (2016). The interaction between Lateral size effect and grain size when scratching polycrystalline copper using a Berkovich indenter. Philosophical Magazine, 96(32-34), 3414-3429. [42] Zhang, P., Zhao, H., Shi, C., Zhang, L., Huang, H., & Ren, L. (2013). Influence of double-tip scratch and single-tip scratch on nano-scratching process via molecular dynamics simulation. Applied surface science, 280, 751-756. [43] Zhu, P. Z., Hu, Y. Z., Wang, H., & Ma, T. B. (2011). Study of effect of indenter shape in nanometric scratching process using molecular dynamics. Materials Science and Engineering: A, 528(13-14), 4522-4527. [44] Liu, X., Liu, Z., & Wei, Y. (2015). Ploughing friction and nanohardness dependent on the tip tilt in nano-scratch test for single crystal gold. Computational Materials Science, 110, 54-61. [45] Fang, F. Z., Wu, H., Zhou, W., & Hu, X. T. (2007). A study on mechanism of nano-cutting single crystal silicon. Journal of materials processing technology, 184(1-3), 407-410. [46] Meng, B., Yuan, D., & Xu, S. (2019). Study on strain rate and heat effect on the removal mechanism of SiC during nano-scratching process by molecular dynamics simulation. International Journal of Mechanical Sciences, 151, 724-732. [47] Liu, B., Xu, Z., Chen, C., Pang, K., Wang, Y., & Ruan, Q. (2019). Effect of tool edge radius on material removal mechanism of single-crystal silicon: numerical and experimental study. Computational Materials Science, 163, 127-133. [48] Zhu, B., Zhao, H., Zhao, D., Zhang, P., Yang, Y., Han, L., & Kui, H. (2016). Effects of vibration frequency on vibration-assisted nano-scratch process of mono-crystalline copper via molecular dynamics simulation. AIP Advances, 6(3), 035015. [49] Zhu, P. Z., Hu, Y. Z., Ma, T. B., & Wang, H. (2010). Study of AFM-based nanometric cutting process using molecular dynamics. Applied Surface Science, 256(23), 7160-7165. [50] Jian-Hao, C., Qiu-Yang, Z., Zhen-Yu, Z., Cong, D., & Zhong-Yu, P. (2021). Molecular dynamics simulation of monocrystalline copper nano-scratch process under the excitation of ultrasonic vibration. Materials Research Express, 8(4), 046507. [51] Oluwajobi, A. O., & Chen, X. (2012, September). The effect of the variation of velocity on the molecular dynamics simulation of nanomachining. In 18th International Conference on Automation and Computing (ICAC) (pp. 1-6). IEEE. [52] Plimpton, S. (1995). Fast parallel algorithms for short-range molecular dynamics. Journal of computational physics, 117(1), 1-19. [53] Stukowski, A. (2009). Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Modelling and simulation in materials science and engineering, 18(1), 015012. [54] Tian, Y., Li, J., Luo, G., & Fang, Q. (2022). Tribological property and subsurface damage of nanotwinned Cu/FeCoCrNi high entropy alloy nanolaminates at various scratching velocities and normal loads. Tribology International, 107435. [55] Hodge, A. M., & Nieh, T. G. (2004). Evaluating abrasive wear of amorphous alloys using nanoscratch technique. Intermetallics, 12(7-9), 741-748. [56] Bui, T. X., Fang, T. H., & Lee, C. I. (2020). Strain rate and shear-transformation zone response of nanoindentation and nanoscratching on Ni50Zr50 metallic glasses using molecular dynamics. Physica B: Condensed Matter, 583, 412021. [57] Pei, Q. X., Lu, C., & Lee, H. P. (2007). Large scale molecular dynamics study of nanometric machining of copper. Computational Materials Science, 41(2), 177-185. [58] Doan, D. Q., Fang, T. H., & Chen, T. H. (2022). Nanomachining characteristics of textured polycrystalline NiFeCo alloy using molecular dynamics. Journal of Manufacturing Processes, 74, 423-440. [59] Salishchev, G. A., Tikhonovsky, M. A., Shaysultanov, D. G., Stepanov, N. D., Kuznetsov, A. V., Kolodiy, I. V., ... & Senkov, O. N. (2014). Effect of Mn and V on structure and mechanical properties of high-entropy alloys based on CoCrFeNi system. Journal of Alloys and Compounds, 591, 11-21. [60] Xu, Y., Wang, M., Zhu, F., Liu, X., Chen, Q., Hu, J., ... & Liu, Y. (2019). A molecular dynamic study of nano-grinding of a monocrystalline copper-silicon substrate. Applied Surface Science, 493, 933-947. [61] Li, J., Fang, Q., Liu, Y., & Zhang, L. (2015). Scratching of copper with rough surfaces conducted by diamond tip simulated using molecular dynamics. The International Journal of Advanced Manufacturing Technology, 77(5), 1057-1070. [62] Zhu, P., Hu, Y., Fang, F., & Wang, H. (2012). Multiscale simulations of nanoindentation and nanoscratch of single crystal copper. Applied surface science, 258(10), 4624-4631.
|