|
[1] M. Ashokkumar, D. Thirumalaikumarasamy, T. Sonar, S. Deepak, P. Vignesh, and M. Anbarasu, “An overview of cold spray coating in additive manufacturing, component repairing and other engineering applications,” Journal of the Mechanical Behavior of Materials, vol. 31, no. 1. 2022. doi: 10.1515/jmbm-2022-0056. [2] R. Supekar, R. B. Nair, A. McDonald, and P. Stoyanov, “Sliding wear behavior of high entropy alloy coatings deposited through cold spraying and flame spraying: A comparative assessment,” Wear, vol. 516–517, 2023, doi: 10.1016/j.wear.2022.204596. [3] S. Yin, H. L. Liao, and X. F. Wang, “Euler based finite element analysis on high velocity impact behaviour in cold spraying,” Surface Engineering, vol. 30, no. 5, 2014, doi: 10.1179/1743294413Y.0000000240. [4] A. V. Pham, T. H. Fang, V. T. Nguyen, and T. H. Chen, “Impact and wetting properties of Au nanoparticle on Cu(001) textured surfaces by molecular dynamics,” Mater Chem Phys, vol. 272, 2021, doi: 10.1016/j.matchemphys.2021.125039. [5] D. H. L. SENG et al., “Influence of spray angle in cold spray deposition of Ti-6Al-4V coatings on Al6061-T6 substrates,” Surf Coat Technol, vol. 432, 2022, doi: 10.1016/j.surfcoat.2021.128068. [6] H. Singh, M. Kumar, and R. Singh, “An overview of various applications of cold spray coating process,” Mater Today Proc, vol. 56, 2022, doi: 10.1016/j.matpr.2021.10.160. [7] S. Suresh, S. W. Lee, M. Aindow, H. D. Brody, V. K. Champagne, and A. M. Dongare, “Mesoscale modeling of jet initiation behavior and microstructural evolution during cold spray single particle impact,” Acta Mater, vol. 182, 2020, doi: 10.1016/j.actamat.2019.10.039. [8] S. Kumar, G. Bae, and C. Lee, “Influence of substrate roughness on bonding mechanism in cold spray,” Surf Coat Technol, vol. 304, 2016, doi: 10.1016/j.surfcoat.2016.07.082. [9] S. Rahmati, A. Zúñiga, B. Jodoin, and R. G. A. Veiga, “Deformation of copper particles upon impact: A molecular dynamics study of cold spray,” Comput Mater Sci, vol. 171, 2020, doi: 10.1016/j.commatsci.2019.109219. [10] G. Prashar and H. Vasudev, “A comprehensive review on sustainable cold spray additive manufacturing: State of the art, challenges and future challenges,” Journal of Cleaner Production, vol. 310. 2021. doi: 10.1016/j.jclepro.2021.127606. [11] S. Yin et al., “Towards high-strength cold spray additive manufactured metals: Methods, mechanisms, and properties,” Journal of Materials Science and Technology, vol. 170. 2024. doi: 10.1016/j.jmst.2023.05.047. [12] S. T. Oyinbo, T. C. Jen, Y. Zhu, J. S. Ajiboye, and S. O. Ismail, “Atomistic simulations of interfacial deformation and bonding mechanism of Pd-Cu composite metal membrane using cold gas dynamic spray process,” Vacuum, vol. 182, 2020, doi: 10.1016/j.vacuum.2020.109779. [13] T. V. Chitrakar, J. W. Keto, M. F. Becker, and D. Kovar, “Particle deposition and deformation from high speed impaction of Ag nanoparticles,” Acta Mater, vol. 135, 2017, doi: 10.1016/j.actamat.2017.05.062. [14] S. Weiller, F. Delloro, P. Lomonaco, M. Jeandin, and C. Garion, “A finite elements study on porosity creation mechanisms in cold sprayed coatings,” in Key Engineering Materials, 2019. doi: 10.4028/www.scientific.net/KEM.813.358. [15] P. Zhao, Q. Zhang, Y. Guo, H. Liu, and Z. Deng, “Atomic simulation of crystal orientation effect on coating surface generation mechanisms in cold spray,” Comput Mater Sci, vol. 184, 2020, doi: 10.1016/j.commatsci.2020.109859. [16] Y. Xiong, X. Xiong, S. Yoon, G. Bae, and C. Lee, “Dependence of bonding mechanisms of cold sprayed coatings on strain-rate-induced non-equilibrium phase transformation,” Journal of Thermal Spray Technology, vol. 20, no. 4. 2011. doi: 10.1007/s11666-011-9634-0. [17] L. M. Pereira, S. Rahmati, A. Zúñiga, B. Jodoin, and R. G. A. Veiga, “Atomistic study of metallurgical bonding upon the high velocity impact of fcc core-shell particles,” Comput Mater Sci, vol. 186, 2021, doi: 10.1016/j.commatsci.2020.110045. [18] A. Joshi and S. James, “Molecular dynamics simulation study of cold spray process,” J Manuf Process, vol. 33, 2018, doi: 10.1016/j.jmapro.2018.05.005. [19] L. He and M. Hassani, “A Review of the Mechanical and Tribological Behavior of Cold Spray Metal Matrix Composites,” Journal of Thermal Spray Technology, vol. 29, no. 7. 2020. doi: 10.1007/s11666-020-01091-w. [20] S. T. Oyinbo and T. C. Jen, “Molecular dynamics investigation of temperature effect and surface configurations on multiple impacts plastic deformation in a palladium-copper composite metal membrane (CMM): A cold gas dynamic spray (CGDS) process,” Comput Mater Sci, vol. 185, 2020, doi: 10.1016/j.commatsci.2020.109968. [21] M. A. Adaan-Nyiak and A. A. Tiamiyu, “Recent advances on bonding mechanism in cold spray process: A review of single-particle impact methods,” Journal of Materials Research, vol. 38, no. 1. 2023. doi: 10.1557/s43578- 022-00764-2. [22] P. Gao, C. Zhang, R. Wang, G. Deng, J. Li, and L. Su, “Tamping effect during additive manufacturing of copper coating by cold spray: A comprehensive molecular dynamics study,” Addit Manuf, vol. 66, 2023, doi: 10.1016/j.addma.2023.103448. [23] H. Jami and A. Jabbarzadeh, “Unravelling ultrafast deformation mechanisms in surface deposition of titanium nanoparticles,” Appl Surf Sci, vol. 489, 2019, doi: 10.1016/j.apsusc.2019.05.271. [24] Y. Nikravesh, G. Frantziskonis, M. I. Latypov, and K. Muralidharan, “Atomistic characterization of impact bonding in cold spray deposition of copper,” Materialia (Oxf), vol. 28, 2023, doi: 10.1016/j.mtla.2023.101736. [25] S. Rahmati, R. G. A. Veiga, B. Jodoin, and A. Zúñiga, “Crystal orientation and grain boundary effects on plastic deformation of FCC particles under high velocity impacts,” Materialia (Oxf), vol. 15, 2021, doi: 10.1016/j.mtla.2021.101004. [26] P. Poza and M. Á. Garrido-Maneiro, “Cold-sprayed coatings: Microstructure, mechanical properties, and wear behaviour,” Prog Mater Sci, vol. 123, 2022, doi: 10.1016/j.pmatsci.2021.100839. [27] S. Yin et al., “Cold spray additive manufacturing and repair: Fundamentals and applications,” Additive Manufacturing, vol. 21. 2018. doi: 10.1016/j.addma.2018.04.017. [28] C. J. Li and W. Y. Li, “Deposition characteristics of titanium coating in cold spraying,” Surf Coat Technol, vol. 167, no. 2–3, 2003, doi: 10.1016/S0257- 8972(02)00919-2. [29] S. T. Oyinbo, T. C. Jen, S. A. Aasa, O. O. Abegunde, and Y. Zhu, “Development of palladium nanoparticles deposition on a copper substrate using a molecular dynamic (MD) simulation: A cold gas dynamic spray process,” Manuf Rev (Les Ulis), vol. 7, 2020, doi: 10.1051/mfreview/2020028. [30] C. J. Li, W. Y. Li, and H. Liao, “Examination of the critical velocity for deposition of particles in cold spraying,” Journal of Thermal Spray Technology, vol. 15, no. 2. 2006. doi: 10.1361/105996306X108093. [31] P. Gao, C. Zhang, R. Wang, G. Deng, and L. Su, “Tamping Effect During Additive Manufacturing of Copper Coating by Cold Spray: A Comprehensive Molecular Dynamics Study,” SSRN Electronic Journal, 2022, doi: 10.2139/ssrn.4285342. [32] D. L. Gilmore, R. C. Dykhuizen, R. A. Neiser, T. J. Roemer, and M. F. Smith, “Particle velocity and deposition efficiency in the cold spray process,” Journal of Thermal Spray Technology, vol. 8, no. 4, 1999, doi: 10.1361/105996399770350278. [33] H. Assadi, F. Gärtner, T. Stoltenhoff, and H. Kreye, “Bonding mechanism in cold gas spraying,” Acta Mater, vol. 51, no. 15, 2003, doi: 10.1016/S1359- 6454(03)00274-X. [34] C. D. Reddy, Z. Q. Zhang, S. Msolli, J. Guo, and N. Sridhar, “Impact velocitydependent bonding mechanisms in metal cold spray,” Surf Coat Technol, vol. 433, 2022, doi: 10.1016/j.surfcoat.2022.128085. [35] X. Mao, F. Duan, F. Wang, C. Hang, H. Chen, and M. Li, “Interfacial microstructure characterization and solderability of the low pressure cold sprayed Cu-Al2O3 coating on Al substrate,” Surf Coat Technol, vol. 452, 2023, doi: 10.1016/j.surfcoat.2022.129093. [36] C. A. Widener, O. C. Ozdemir, and M. Carter, “Structural repair using cold spray technology for enhanced sustainability of high value assets,” in Procedia Manufacturing, 2018. doi: 10.1016/j.promfg.2018.02.132. [37] C. Chen et al., “Metallization of polyether ether ketone (PEEK) by copper coating via cold spray,” Surf Coat Technol, vol. 342, 2018, doi: 10.1016/j.surfcoat.2018.02.087. [38] J. Karthikeyan, “Development of oxidation resistant coatings on GRCop-84 substrates by cold spray process,” Nasa/Cr, vol. 214706, no. May 2007. 2007. [39] D. Beckedahl, E. O. Obaga, D. A. Uken, A. Sergi, and M. Ferrario, “On the configurational temperature Nosè-Hoover thermostat,” Physica A: Statistical Mechanics and its Applications, vol. 461, 2016, doi: 10.1016/j.physa.2016.05.008. [40] X. W. Zhou, R. A. Johnson, and H. N. G. Wadley, “Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers,” Phys Rev B Condens Matter Mater Phys, vol. 69, no. 14, 2004, doi: 10.1103/PhysRevB.69.144113. [41] M. S. Daw and M. I. Baskes, “Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals,” Phys Rev B, vol. 29, no. 12, 1984, doi: 10.1103/PhysRevB.29.6443. [42] A. P. Thompson et al., “LAMMPS - a flexible simulation tool for particlebased materials modeling at the atomic, meso, and continuum scales,” Comput Phys Commun, vol. 271, 2022, doi: 10.1016/j.cpc.2021.108171. [43] F. Spaepen, “A survey of energies in materials science,” in Philosophical Magazine, 2005. doi: 10.1080/14786430500155080. [44] M. Grujicic, C. L. Zhao, W. S. DeRosset, and D. Helfritch, “Adiabatic shear instability based mechanism for particles/substrate bonding in the cold-gas dynamic-spray process,” Mater Des, vol. 25, no. 8, 2004, doi: 10.1016/j.matdes.2004.03.008. [45] B. Jodoin, L. Ajdelsztajn, E. Sansoucy, A. Zúñiga, P. Richer, and E. J. Lavernia, “Effect of particle size, morphology, and hardness on cold gas dynamic sprayed aluminum alloy coatings,” Surf Coat Technol, vol. 201, no. 6, 2006, doi: 10.1016/j.surfcoat.2006.07.232. [46] R. Ghelichi, S. Bagherifard, M. Guagliano, and M. Verani, “Numerical simulation of cold spray coating,” Surf Coat Technol, vol. 205, no. 23–24, 2011, doi: 10.1016/j.surfcoat.2011.05.038. [47] D. Goldbaum et al., “The effect of deposition conditions on adhesion strength of Ti and Ti6Al4V cold spray splats,” Journal of Thermal Spray Technology, vol. 21, no. 2. 2012. doi: 10.1007/s11666-011-9720-3.
|