[ 1 ]Francisco E. Fontúrbel, Roberto F. Nespolo, Guillermo C. Amico, David M. Watson, "Climate change can disrupt ecological interactions in mysterious ways: Using ecological generalists to forecast community-wide effects." Climate Change Ecology, vol. 2, 2021, p. 100044. ISSN 2666-9005.
[ 2 ]Ömer Esen, Durmuş Çağrı Yıldırım, and Seda Yıldırım, "Pollute less or tax more? Asymmetries in the EU environmental taxes – Ecological balance nexus." Environmental Impact Assessment Review, vol. 91, 2021, p. 106662. ISSN 0195-9255.
[ 3 ] Zonglin Yang, Yaqi Shi, Jun Wang, Le Wang, Xianguo Li, Dahai Zhang, "Unique functional responses of fungal communities to various environments in the mangroves of the Maowei Sea in Guangxi, China." Marine Pollution Bulletin, vol. 173, part B, 2021, p. 113091. ISSN 0025-326X.
[ 4 ]Nguyen, Anh et al. “Long-Term Heavy Metal Retention by Mangroves and Effect on Its Growth: A Field Inventory and Scenario Simulation.” International journal of environmental research and public health vol. 17,23 9131. 7 Dec. 2020, doi:10.3390/ijerph17239131
[ 5 ]Juan Carlos Vizcarra, Erik A. Burlingame, Clemens B. Hug, Yury Goltsev, Brian S. White, Darren R. Tyson, Artem Sokolov, "A community-based approach to image analysis of cells, tissues and tumors." Computerized Medical Imaging and Graphics, vol. 95, 2022, p. 102013. ISSN 0895-6111.
[ 6 ]Bochkovskiy, Alexey, Chien-Yao Wang, and Hong-Yuan Mark Liao. "YOLOv4: Optimal Speed and Accuracy of Object Detection." arXiv preprint arXiv:2004.10934 (2020).
[ 7 ]Ren, Shaoqing, et al. "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks." IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), vol. 39, no. 6, 2017, pp. 1137-1149.
[ 8 ]Mrinal R. Bachute, Javed M. Subhedar, "Autonomous Driving Architectures: Insights of Machine Learning and Deep Learning Algorithms." Machine Learning with Applications, vol. 6, 2021, p. 100164. ISSN 2666-8270.
[ 9 ]Xue Lv, Mingxia Su, Zekun Wang, "Application of Face Recognition Method Under Deep Learning Algorithm in Embedded Systems." Microprocessors and Microsystems, 2021, p. 104034. ISSN 0141-9331.
[ 10 ]Hsieh-Chang Huang, Ching-Tang Hsieh, Min-Nan Hsiao, Cheng-Hsiang Yeh, "A Study of Automatic Separation and Recognition for Overlapped Fingerprints." Applied Soft Computing, vol. 71, 2018, pp. 127-140. ISSN 1568-4946.
[ 11 ]Yifeng Chen, Cheng Wu, Yiming Wang, "Whether Normalized or Not? Towards More Robust Iris Recognition Using Dynamic Programming." Image and Vision Computing, vol. 107, 2021, 104112. ISSN 0262-8856.
[ 12 ]Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. "TensorFlow: A System for Large-Scale Machine Learning." Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation (OSDI'16). USENIX Association, 2016, pp. 265-283.
[ 13 ]Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. "PyTorch: An Imperative Style, High-Performance Deep Learning Library." Proceedings of the 33rd International Conference on Neural Information Processing Systems. Curran Associates Inc., 2019.
[ 14 ]Chollet, François, and others. "Keras: The Python Deep Learning library." Astrophysics Source Code Library, 2018, ascl:1806.022.
[ 15 ]Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick, Sergio Guadarrama, Trevor Darrell. "Caffe: Convolutional Architecture for Fast Feature Embedding." MM 2014 - Proceedings of the 2014 ACM Conference on Multimedia, 2014, doi:10.1145/2647868.2654889
[ 16 ]Jürgen Schmidhuber. "Deep Learning in Neural Networks: An Overview." Neural Networks, vol. 61, 2015, pp. 85-117. ISSN 0893-6080.
[ 17 ]Adam Gauci, et al. "Automating Jellyfish Species Recognition through Faster Region-Based Convolution Neural Networks." Applied Sciences, 2020, doi:10.3390/app10228257.
[ 18 ]Martin-Abadal M, Ruiz-Frau A, Hinz H, Gonzalez-Cid Y. Jellytoring: Real-Time Jellyfish Monitoring Based on Deep Learning Object Detection. Sensors. 2020; 20(6):1708.
[ 19 ]Ben Mcilwaine, et al. "JellyNet: The Convolutional Neural Network Jellyfish Bloom Detector." International Journal of Applied Earth Observation and Geoinformation, vol. 97, 2021, p. 102279.
[ 20 ]鄭鈞維。「台灣高雄林園濕地倒立水母族群之季節動態及其與水文環境關聯之研究」。碩士論文,國立中山大學海洋生物科技暨資源學系研究所,2020。[ 21 ]Glorot, Xavier & Bordes, Antoine & Bengio, Y.. (2010). Deep Sparse Rectifier Neural Networks. Journal of Machine Learning Research. 15.
[ 22 ]Z. Dong, K. Xu, Y. Yang, H. Bao, W. Xu and R. W. H. Lau, "Location-aware Single Image Reflection Removal," 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 2021, pp. 4997-5006, doi: 10.1109/ICCV48922.2021.00497.
[ 23 ]Bochkovskiy, Alexey, Chien-Yao Wang, and Hong-Yuan Mark Liao. "YOLOv4: Optimal Speed and Accuracy of Object Detection." arXiv preprint arXiv:2004.10934 (2020).
[ 24 ]Diganta Misra."Mish: A Self Regularized Non-Monotonic Activation Function." 2020. arXiv preprint arXiv:1908.08681.
[ 25 ]Maas, Andrew L.. “Rectifier Nonlinearities Improve Neural Network Acoustic Models.” (2013).
[ 26 ]Clevert, Djork-Arné & Unterthiner, Thomas & Hochreiter, Sepp. (2016). Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs).
[ 27 ]Nair, Vinod & Hinton, Geoffrey. (2010). Rectified Linear Units Improve Restricted Boltzmann Machines Vinod Nair. Proceedings of ICML. 27. 807-814.
[ 28 ]Gulcehre, Caglar & Moczulski, Marcin & Denil, Misha & Bengio, Y.. (2016). Noisy Activation Functions.
[ 29 ]Everingham, M., Van Gool, L., Williams, C.K.I. et al. The PASCAL Visual Object Classes (VOC) Challenge. Int J Comput Vis 88, 303–338 (2010). https://doi.org/10.1007/s11263-009-0275-4