|
[1] D. Yang, X. Zhang, Y. Hou, K. Wang, T. Ye, J. Yoon, C. Wu, M. Sanghadasa, and S. Liu, S. Priya, “28.3 %-efficiency perovskite/silicon tandem solar cell by optimal transparent electrode for high efficient semitransparent top cell,” Nano Energy, vol. 84, p. 105934, 2021. [2] Z. Qiua, Z. Xua, N. Lia, N. Zhoua, Y. Chena, X. Wanb, J. Liub, N. Lib, X. Haoe, P. Bie, Q. Chend, B. Caoc, and H. Zhoua, “Monolithic perovskite/Si tandem solar cells exceeding 22% efficiency via optimizing top cell absorber,” Nano Energy, vol. 53, pp. 798-807, 2018. [3] E. Lamanna, F. Matteocci, E. Calabro, L. Serenelli, E. Salza, L. Martini, F. Menchini, M. Izzi, A. Agresti, S. Pescetelli, S. Bellani, A. E. D. R. Castillo, F. Bonaccorso, M. Tucci, and A. D. Carlo, “Mechanically stacked, two-terminal graphene-based perovskite/silicon tandem solar cell with efficiency over 26 %,” Joule, vol. 4, pp. 865-881, 2020. [4] Y. Wu, D. Yan, J. Peng, T. Duong, Y. Wan, S. P. Phang, H. Shen, N. Wu, C. Barugkin, X. Fu, S. Surve, D. Grant, D. Walter, T. P. White, K. R, Catchpole, and K. J. Weber, “Monolithic perovskite/silicon-homojunction tandem solar cell with over 22 % efficiency,” Energy & Environmental Science, vol. 10, pp. 2472-2479, 2017. [5] R. Das, K. Adhikary, and S. Ray, “The role of oxygen and hydrogen partial pressures on structural and optical properties of ITO films deposited by reactive RF-magnetron sputtering,” Applied Surface Science, vol. 253, pp. 6068–6073, 2007. [6] J. Kwon, M. J. Im, C. U. Kim, S. H. Won, S. B. Kang, S. H. Kang, I. T. Choi, H. K. Kim, I. H. Kim, J. H. Park, and K. J. Choi, “Two-terminal DSSC/silicon tandem solar cells exceeding 18 % efficiency,” Energy & Environmental Science, vol. 9, pp. 3657-3665, 2016. [7] H. Kanda, N. Shibayama, A. Uzum, T. Umeyama, H. Imahori, Y. H. Chiang, P. Chen, M. K. Nazeeruddin, and S. Ito, “Facile fabrication method of small-sized crystal Silicon solar cells for ubiquitous applications and tandem device with perovskite solar cells,” Materials Today Energy, vol. 7, pp. 190-198, 2018. [8] A. A. Ashouri, E. Kohnen, B. Li, A. Magomedov, H. Hempel, P. Caprioglio, J. A. Marquez, A. B. M. Vilches, E. Kasparavicius, J. A. Smith, N. Phung, D. Menzel, M. Grischek, L. Kegelmann, D. Skroblin, C. Gollwitzer, T. Malinauskas, M. Jost, G. Matic, B. Rech, R. Schlatmann, M. Topic, L. Korte, A. Abate, B. Stannowski, D. Neher, M. Stolterfoht, T. Unold, V. Getautis, and S. Albrecht, “Monolithic perovskite/silicon tandem solar cell with > 29 % efficiency by enhanced hole extraction,” Science, vol. 370, pp. 1300-1309, 2020. [9] C. U. Kima, J. C. Yua, E. D. Junga, I. Y. Choia, W. Parka, H. Leea, I. Kimb, D. K. Leec, K. K. Hongd, M. H. Songa, and K. J. Choia, “Optimization of device design for low cost and high efficiency planar monolithic perovskite/silicon tandem solar cells,” Nano Energy, vol. 60, pp. 213-221, 2019. [10] S. I. Kim, T. D. Jung, and P. K. Song, “Enhanced characterization of ITO films deposited on PET by RF superimposed DC magnetron sputtering,” Thin Solid Films, vol. 518, pp. 3085-3088, 2010., [11] K. Utsumiu, O. Matsunaga, and T. Takahata, “Low resistivity ITO film prepared using the ultra high density ITO target,” Thin Solid Films, vol. 334, pp. 30-34, 1998. [12] J. Txintxurreta, E. G. Berasategui, R. Ortiz, O. Hernandez, L. Mendizabal, and J. Barriga, “Indium tin oxide thin film deposition by magnetron sputtering at room temperature for the manufacturing of efficient transparent heaters,” Coatings, vol. 11, p. 11010092, 2021. [13] T. J. Vink, W. Walrave, J. L. C. Daams, P. C. Baarslag, and J. E. A. M. Meerakker, “On the homogeneity of sputter-deposited ITO films part I. stress and microstructure,” Thin Solid Films, vol. 266, pp. 145-151, 1995. [14] A. M. Gheidari, F. Behafarid, G. Kavei, and M. Kazemzad, “Effect of sputtering pressure and annealing temperature on the properties of indium tin oxide thin films,” Materials Science and Engineering B, vol. 136, pp. 37-40, 2007. [15] H. Ma, J. S. Cho, and C. H. Park, “A study of indium tin oxide thin film deposited at low temperature using facing target sputtering system,” Surface and Coatings Technology, vol. 153, pp. 131-137, 2002. [16] M. M. Aliyu, S. Hossain, J. Husna, N. Dhar, M. Q. Huda, K. Sopian, and N. Amin, “High quality indium tin oxide (ITO) film growth by controlling pressure in RF magnetron sputtering,” 2012 38th IEEE Photovoltaic Specialists Conference, vol. 2012, p. 002009, 2012. [17] D. Das, and L. Karmakar, “Further optimization of ITO films at the melting point of Sn and configuration of ohmic contact at the c-Si/ITO interface,” Applied Surface Science, vol. 481, pp. 16, 2019. [18] G. G. Pethuraja, R. E. Welser, A. K. Sood, C. Lee, N. J. Alexander, H. Efstathiadis, P. Haldar, and J. L. Harvey, “Current-voltage characteristics of ITO/p-Si and ITO/n-Si contact interfaces,” Advances in Materials Physics and Chemistry, vol. 2, pp. 59-62, 2012. [19] T. Mizrah, and D. Adler, “Operation of ITO/Si heterojunction solar cells,” Applied Physics Letters, vol.29, pp. 682-684, 1976. [20] O. Malik, F. J. D. L Hidalga-W, C. Zuniga-I, and G. Ruiz-T, “Efficient ITO–Si solar cells and power modules fabricated with a low temperature technology: results and perspectives,” Journal of Non-Crystalline Solids, vol. 354, pp. 2472-2477, 2008. [21] H. B. Michaelson, “The work function of the elements and its periodicity,” Journal of Applied Physics, vol. 48, pp. 4729-4733, 1977. [22] J. Lee, Y. J. Lee, M. Ju, K. Ryu, B. Kim, and J. Yi, “A novel method for crystalline silicon solar cells with low contact resistance and antireflection coating by an oxidized Mg layer,” Nanoscale Research Letters, vol. 7, pp. 1-5, 2012. [23] D. Tantraviwat, W. Yamwong, U. Techakijkajorn, K. Imai, and B. Inceesungvorn, “Schottky barrier height engineering of Ti/n-type silicon diode by means of ion implantation,” Walailak Journal of Science and Technology, vol. 15, pp. 803-809, 2018. [24] K. Yoo, and J. H. Lee, “Effect of low temperature annealing on ITO-on-Si schottky junction,” IEEE Electron Device Letters, vol. 38, pp. 426-429, 2017. [25] B. Ghosh, “Electrical contacts for II–VI semiconducting devices,” Microelectronic Engineering, vol. 86, pp. 2187-2206, 2009. [26] M. M. Staszuk, “Comparison of the values of solar cell contact resistivity measured with the transmission line method (TLM) and the potential difference (PD),” Materials, vol. 14, pp. 1-12, 2021. [27] P. N. Vinod, “Specific contact resistance measurements of the screen-printed Ag thick film contacts in the silicon solar cells by three-point probe methodology and TLM method,”Journal of Materials Science: Materials in Electronics, vol. 22, pp. 1248-1257, 2011. [28] P. N. Vinod, “Specific contact resistance of the porous silicon and silver metal ohmic contact structure,” Semiconductor science and technology, vol. 20, pp. 966-971, 2005. [29] P. Muralidharan, M. Leilaeioun, W. Weigand, Z. C. Holman, S. M. Goodnick, and D. Vasileska, “Understanding transport in hole contacts of silicon heterojunction solar cells by simulating TLM structures,” IEEE Journal of Photovoltaics, vol. 10, pp. 363-371, 2019. [30] D. W. Kima, Y. J. Sunga, J. W. Parkb, and G. Y. Yeom, “A study of transparent indium tin oxide (ITO) contact to p-GaN,” Thin Solid Films, vol. 398, pp.87-92, 2001. [31] M. Gheidari, and E. A. Soleimani, “A study of Al/Ti, Al/Ni/Cr and Al/Mo ohmic contacts to indium tin oxide (ITO) for application in thin film solar cell,” Proceedings of ISES World Congress, vol. 2007, pp. 1123-1125, 2008. [32] J. S. Song, J. Y. Yang, J. S. Lee, J. P. Hong, and J. H. Ha, “Investigation of transparent conducting oxide/Si junction for the emitter wrap through solar cells,” 2010 35 th IEEE Photovoltaic Specialists Conference, pp. 3611-3613, 2010. [33] E. Akbarnejad, E. A. Soleimani, and Z. Ghorannevis, “Improved electrical properties of Cr/ITO ohmic contact using RF sputtering system,” Molecular Crystals and Liquid Crystals, vol. 607, pp. 60-69, 2015. [34] S.M. Sze, “Semiconductor devices,” John Wiley & Song.Inc, pp. 231-233, 2002.
|