|
1.Ben-Shlomo Y, Darweesh S, Llibre-Guerra J, Marras C, San Luciano M, Tanner C. The epidemiology of Parkinson's disease. Lancet. Jan 20 2024;403(10423):283-292. doi:10.1016/s0140-6736(23)01419-8 2.Dorsey ER, Bloem BR. Parkinson's Disease Is Predominantly an Environmental Disease. J Parkinsons Dis. 2024;14(3):451-465. doi:10.3233/jpd-230357 3.Morris HR, Spillantini MG, Sue CM, Williams-Gray CH. The pathogenesis of Parkinson's disease. Lancet. Jan 20 2024;403(10423):293-304. doi:10.1016/s0140-6736(23)01478-2 4.Diaz-Ortiz ME, Seo Y, Posavi M, et al. GPNMB confers risk for Parkinson's disease through interaction with α-synuclein. Science. Aug 19 2022;377(6608):eabk0637. doi:10.1126/science.abk0637 5.Saade M, Araujo de Souza G, Scavone C, Kinoshita PF. The Role of GPNMB in Inflammation. Front Immunol. 2021;12:674739. doi:10.3389/fimmu.2021.674739 6.Kia DA, Zhang D, Guelfi S, et al. Identification of Candidate Parkinson Disease Genes by Integrating Genome-Wide Association Study, Expression, and Epigenetic Data Sets. JAMA Neurology. 2021;78(4):464. doi:10.1001/jamaneurol.2020.5257 7.A two-stage meta-analysis identifies several new loci for Parkinson's disease. PLoS Genet. Jun 2011;7(6):e1002142. doi:10.1371/journal.pgen.1002142 8.Nalls MA, Pankratz N, Lill CM, et al. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson's disease. Nat Genet. Sep 2014;46(9):989-93. doi:10.1038/ng.3043 9.Lowe PP, Morel C, Ambade A, et al. Chronic alcohol-induced neuroinflammation involves CCR2/5-dependent peripheral macrophage infiltration and microglia alterations. J Neuroinflammation. Oct 9 2020;17(1):296. doi:10.1186/s12974-020-01972-5 10.Wilson LE, Xu Z, Harlid S, et al. Alcohol and DNA Methylation: An Epigenome-Wide Association Study in Blood and Normal Breast Tissue. American Journal of Epidemiology. 2019;188(6):1055-1065. doi:10.1093/aje/kwz032 11.Harris PS, Michel CR, Yun Y, et al. Proteomic analysis of alcohol-associated hepatitis reveals glycoprotein NMB (GPNMB) as a novel hepatic and serum biomarker. Alcohol. Mar 2022;99:35-48. doi:10.1016/j.alcohol.2021.11.005 12.Russillo MC, Andreozzi V, Erro R, et al. Sex Differences in Parkinson’s Disease: From Bench to Bedside. Brain Sciences. 2022;12 13.Wu Y, Goodrich JM, Dolinoy DC, et al. Accelerometer-measured Physical Activity, Reproductive Hormones, and DNA Methylation. Med Sci Sports Exerc. Mar 2020;52(3):598-607. doi:10.1249/mss.0000000000002175 14.Landen S, Voisin S, Craig JM, McGee SL, Lamon S, Eynon N. Genetic and epigenetic sex-specific adaptations to endurance exercise. Epigenetics. Jun 2019;14(6):523-535. doi:10.1080/15592294.2019.1603961 15.Padilha C, Souza R, Grossl FS, Gauer APM, de Sá CA, Rodrigues-Junior SA. Physical exercise and its effects on people with Parkinson's disease: Umbrella review. PLoS One. 2023;18(11):e0293826. doi:10.1371/journal.pone.0293826 16.Wei CY, Yang JH, Yeh EC, et al. Genetic profiles of 103,106 individuals in the Taiwan Biobank provide insights into the health and history of Han Chinese. NPJ Genom Med. Feb 11 2021;6(1):10. doi:10.1038/s41525-021-00178-9 17.Chang D, Nalls MA, Hallgrímsdóttir IB, et al. A meta-analysis of genome-wide association studies identifies 17 new Parkinson's disease risk loci. Nat Genet. Oct 2017;49(10):1511-1516. doi:10.1038/ng.3955 18.Prasad R, Jho EH. A concise review of human brain methylome during aging and neurodegenerative diseases. BMB Rep. Oct 2019;52(10):577-588. doi:10.5483/BMBRep.2019.52.10.215 19.Murthy MN, Blauwendraat C, Guelfi S, Hardy J, Lewis PA, Trabzuni D. Increased brain expression of GPNMB is associated with genome wide significant risk for Parkinson's disease on chromosome 7p15.3. Neurogenetics. Jul 2017;18(3):121-133. doi:10.1007/s10048-017-0514-8 20.Masliah E, Dumaop W, Galasko D, Desplats P. Distinctive patterns of DNA methylation associated with Parkinson disease: identification of concordant epigenetic changes in brain and peripheral blood leukocytes. Epigenetics. Oct 2013;8(10):1030-8. doi:10.4161/epi.25865 21.Pieper HC, Evert BO, Kaut O, Riederer PF, Waha A, Wüllner U. Different methylation of the TNF-alpha promoter in cortex and substantia nigra: Implications for selective neuronal vulnerability. Neurobiol Dis. Dec 2008;32(3):521-7. doi:10.1016/j.nbd.2008.09.010 22.Su X, Chu Y, Kordower JH, et al. PGC-1α Promoter Methylation in Parkinson's Disease. PLoS One. 2015;10(8):e0134087. doi:10.1371/journal.pone.0134087 23.Jankovic J, Tan EK. Parkinson's disease: etiopathogenesis and treatment. J Neurol Neurosurg Psychiatry. Aug 2020;91(8):795-808. doi:10.1136/jnnp-2019-322338 24.Salameh Y, Bejaoui Y, El Hajj N. DNA Methylation Biomarkers in Aging and Age-Related Diseases. Front Genet. 2020;11:171. doi:10.3389/fgene.2020.00171 25.Renani PG, Taheri F, Rostami D, et al. Involvement of aberrant regulation of epigenetic mechanisms in the pathogenesis of Parkinson's disease and epigenetic-based therapies. J Cell Physiol. Nov 2019;234(11):19307-19319. doi:10.1002/jcp.28622 26.Budge KM, Neal ML, Richardson JR, Safadi FF. Transgenic Overexpression of GPNMB Protects Against MPTP-Induced Neurodegeneration. Mol Neurobiol. Jul 2020;57(7):2920-2933. doi:10.1007/s12035-020-01921-6 27.Neal ML, Boyle AM, Budge KM, Safadi FF, Richardson JR. The glycoprotein GPNMB attenuates astrocyte inflammatory responses through the CD44 receptor. J Neuroinflammation. Mar 8 2018;15(1):73. doi:10.1186/s12974-018-1100-1 28.Moloney EB, Moskites A, Ferrari EJ, Isacson O, Hallett PJ. The glycoprotein GPNMB is selectively elevated in the substantia nigra of Parkinson's disease patients and increases after lysosomal stress. Neurobiol Dis. Dec 2018;120:1-11. doi:10.1016/j.nbd.2018.08.013 29.Kaiser S, Zhang L, Mollenhauer B, et al. A proteogenomic view of Parkinson’s disease causality and heterogeneity. npj Parkinson's Disease. 2023/02/11 2023;9(1):24. doi:10.1038/s41531-023-00461-9 30.Zhou S, Tian Y, Song X, Xiong J, Cheng G. Brain Proteome-Wide and Transcriptome-Wide Asso-ciation Studies, Bayesian Colocalization, and Mendelian Randomization Analyses Reveal Causal Genes of Parkinson's Disease. J Gerontol A Biol Sci Med Sci. Mar 30 2023;78(4):563-568. doi:10.1093/gerona/glac245 31.Sayers EW, Bolton EE, Brister JR, et al. Database resources of the national center for biotechnology information. Nucleic Acids Res. Jan 7 2022;50(D1):D20-d26. doi:10.1093/nar/gkab1112 32.Philibert RA, Plume JM, Gibbons FX, Brody GH, Beach SR. The impact of recent alcohol use on genome wide DNA methylation signatures. Front Genet. 2012;3:54. doi:10.3389/fgene.2012.00054 33.Manzardo AM, Henkhaus RS, Butler MG. Global DNA promoter methylation in frontal cortex of alcoholics and controls. Gene. Apr 25 2012;498(1):5-12. doi:10.1016/j.gene.2012.01.096 34.Lanquetin A, Leclercq S, de Timary P, et al. Role of inflammation in alcohol-related brain abnormalities: a translational study. Brain Communications. 2021;3(3)doi:10.1093/braincomms/fcab154 35.Coleman LG, Jr., Crews FT. Innate Immune Signaling and Alcohol Use Disorders. Handb Exp Pharmacol. 2018;248:369-396. doi:10.1007/164_2018_92 36.Hamada K, Ferguson LB, Mayfield RD, Krishnan HR, Maienschein-Cline M, Lasek AW. Binge-like ethanol drinking activates anaplastic lymphoma kinase signaling and increases the expression of STAT3 target genes in the mouse hippocampus and prefrontal cortex. Genes Brain Behav. Feb 28 2021:e12729. doi:10.1111/gbb.12729 37.Shao C, Wang X, Wang P, Tang H, He J, Wu N. Parkinson's Disease Risk and Alcohol Intake: A Systematic Review and Dose-Response Meta-Analysis of Prospective Studies. Front Nutr. 2021;8:709846. doi:10.3389/fnut.2021.709846 38.Peters S, Gallo V, Vineis P, et al. Alcohol Consumption and Risk of Parkinson's Disease: Data From a Large Prospective European Cohort. Mov Disord. Jul 2020;35(7):1258-1263. doi:10.1002/mds.28039 39.Bettiol SS, Rose TC, Hughes CJ, Smith LA. Alcohol Consumption and Parkinson's Disease Risk: A Review of Recent Findings. J Parkinsons Dis. 2015;5(3):425-42. doi:10.3233/jpd-150533 40.Fukushima W, Miyake Y, Tanaka K, et al. Alcohol drinking and risk of Parkinson's disease: a case-control study in Japan. BMC Neurology. 2010/11/05 2010;10(1):111. doi:10.1186/1471-2377-10-111 41.Wilson LE, Xu Z, Harlid S, et al. Alcohol and DNA Methylation: An Epigenome-Wide Association Study in Blood and Normal Breast Tissue. Am J Epidemiol. Jun 1 2019;188(6):1055-1065. doi:10.1093/aje/kwz032 42.Liu C, Marioni RE, Hedman Å K, et al. A DNA methylation biomarker of alcohol consumption. Mol Psychiatry. Feb 2018;23(2):422-433. doi:10.1038/mp.2016.192 43.Picillo M, Nicoletti A, Fetoni V, Garavaglia B, Barone P, Pellecchia MT. The relevance of gender in Parkinson's disease: a review. J Neurol. Aug 2017;264(8):1583-1607. doi:10.1007/s00415-016-8384-9 44.Russillo MC, Andreozzi V, Erro R, et al. Sex Differences in Parkinson's Disease: From Bench to Bedside. Brain Sci. Jul 13 2022;12(7)doi:10.3390/brainsci12070917 45.Bouman A, Heineman MJ, Faas MM. Sex hormones and the immune response in humans. Hum Reprod Update. Jul-Aug 2005;11(4):411-23. doi:10.1093/humupd/dmi008 46.Houser MC, Uriarte Huarte O, Wallings RL, et al. Progranulin loss results in sex-dependent dysregulation of the peripheral and central immune system. Front Immunol. 2022;13:1056417. doi:10.3389/fimmu.2022.1056417 47.Tsui KH, Chang YL, Feng TH, Chang PL, Juang HH. Glycoprotein transmembrane nmb: an androgen-downregulated gene attenuates cell invasion and tumorigenesis in prostate carcinoma cells. Prostate. Sep 15 2012;72(13):1431-42. doi:10.1002/pros.22494 48.Kochmanski J, Kuhn NC, Bernstein AI. Parkinson's disease-associated, sex-specific changes in DNA methylation at PARK7 (DJ-1), SLC17A6 (VGLUT2), PTPRN2 (IA-2β), and NR4A2 (NURR1) in cortical neurons. NPJ Parkinsons Dis. Sep 23 2022;8(1):120. doi:10.1038/s41531-022-00355-2 49.Cerri S, Mus L, Blandini F. Parkinson's Disease in Women and Men: What's the Difference? J Parkinsons Dis. 2019;9(3):501-515. doi:10.3233/jpd-191683 50.Xu M, Zhu J, Liu XD, Luo MY, Xu NJ. Roles of physical exercise in neurodegeneration: reversal of epigenetic clock. Transl Neurodegener. Aug 13 2021;10(1):30. doi:10.1186/s40035-021-00254-1 51.Daniele S, Costa B, Pietrobono D, et al. Epigenetic Modifications of the α-Synuclein Gene and Relative Protein Content Are Affected by Ageing and Physical Exercise in Blood from Healthy Subjects. Oxid Med Cell Longev. 2018;2018:3740345. doi:10.1155/2018/3740345 52.Chen H, Zhang SM, Schwarzschild MA, Hernán MA, Ascherio A. Physical activity and the risk of Parkinson disease. Neurology. Feb 22 2005;64(4):664-9. doi:10.1212/01.Wnl.0000151960.28687.93 53.Crotty GF, Schwarzschild MA. Chasing Protection in Parkinson's Disease: Does Exercise Reduce Risk and Progression? Front Aging Neurosci. 2020;12:186. doi:10.3389/fnagi.2020.00186 54.Sujkowski A, Hong L, Wessells RJ, Todi SV. The protective role of exercise against age-related neurodegeneration. Ageing Res Rev. Feb 2022;74:101543. doi:10.1016/j.arr.2021.101543 55.Jang Y, Koo JH, Kwon I, et al. Neuroprotective effects of endurance exercise against neuroinflammation in MPTP-induced Parkinson's disease mice. Brain Res. Jan 15 2017;1655:186-193. doi:10.1016/j.brainres.2016.10.029 56.Mazo CE, Miranda ER, Shadiow J, Vesia M, Haus JM. High Intensity Acute Aerobic Exercise Elicits Alterations in Circulating and Skeletal Muscle Tissue Expression of Neuroprotective Exerkines. Brain Plast. 2022;8(1):5-18. doi:10.3233/bpl-220137 57.Ruiz-González D, Hernández-Martínez A, Valenzuela PL, Morales JS, Soriano-Maldonado A. Effects of physical exercise on plasma brain-derived neurotrophic factor in neurodegenerative disorders: A systematic review and meta-analysis of randomized controlled trials. Neurosci Biobehav Rev. Sep 2021;128:394-405. doi:10.1016/j.neubiorev.2021.05.025 58.Tsukita K, Sakamaki-Tsukita H, Takahashi R. Long-term Effect of Regular Physical Activity and Exercise Habits in Patients With Early Parkinson Disease. Neurology. Feb 22 2022;98(8):e859-e871. doi:10.1212/wnl.0000000000013218 59.Johansson ME, Cameron IGM, Van der Kolk NM, et al. Aerobic Exercise Alters Brain Function and Structure in Parkinson's Disease: A Randomized Controlled Trial. Ann Neurol. Feb 2022;91(2):203-216. doi:10.1002/ana.26291 60.Reynolds GO, Otto MW, Ellis TD, Cronin-Golomb A. The Therapeutic Potential of Exercise to Improve Mood, Cognition, and Sleep in Parkinson's Disease. Mov Disord. Jan 2016;31(1):23-38. doi:10.1002/mds.26484 61.Landen S, Jacques M, Hiam D, et al. Skeletal muscle methylome and transcriptome integration reveals profound sex differences related to muscle function and substrate metabolism. Clin Epigenetics. Nov 3 2021;13(1):202. doi:10.1186/s13148-021-01188-1 62.Lazaratos AM, Annis MG, Siegel PM. GPNMB: a potent inducer of immunosuppression in cancer. Oncogene. Oct 2022;41(41):4573-4590. doi:10.1038/s41388-022-02443-2 63.Zhu Z, Liu Y, Li X, et al. GPNMB mitigates Alzheimer's disease and enhances autophagy via suppressing the mTOR signal. Neurosci Lett. Jan 10 2022;767:136300. doi:10.1016/j.neulet.2021.136300 64.Budge KM, Neal ML, Richardson JR, Safadi FF. Glycoprotein NMB: an Emerging Role in Neurodegenerative Disease. Molecular neurobiology. 2018/06// 2018;55(6):5167-5176. doi:10.1007/s12035-017-0707-z 65.Tanaka H, Shimazawa M, Kimura M, et al. The potential of GPNMB as novel neuroprotective factor in amyotrophic lateral sclerosis. Sci Rep. 2012;2:573. doi:10.1038/srep00573 66.Suda M, Shimizu I, Katsuumi G, et al. Glycoprotein nonmetastatic melanoma protein B regulates lysosomal integrity and lifespan of senescent cells. Sci Rep. Apr 20 2022;12(1):6522. doi:10.1038/s41598-022-10522-3 67.Maric G, Rose AA, Annis MG, Siegel PM. Glycoprotein non-metastatic b (GPNMB): A metastatic mediator and emerging therapeutic target in cancer. Onco Targets Ther. 2013;6:839-52. doi:10.2147/ott.S44906 68.Xie R, Okita Y, Ichikawa Y, et al. Role of the kringle-like domain in glycoprotein NMB for its tumorigenic potential. Cancer Sci. Jul 2019;110(7):2237-2246. doi:10.1111/cas.14076 69.Global, regional, and national burden of Parkinson's disease, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. Nov 2018;17(11):939-953. doi:10.1016/s1474-4422(18)30295-3 70.Pringsheim T, Jette N, Frolkis A, Steeves TD. The prevalence of Parkinson's disease: a systematic review and meta-analysis. Mov Disord. Nov 2014;29(13):1583-90. doi:10.1002/mds.25945 71.Becerra-Diaz M, Song M, Heller N. Androgen and Androgen Receptors as Regulators of Monocyte and Macrophage Biology in the Healthy and Diseased Lung. Front Immunol. 2020;11:1698. doi:10.3389/fimmu.2020.01698 72.Fuentes N, Silveyra P. Estrogen receptor signaling mechanisms. Adv Protein Chem Struct Biol. 2019;116:135-170. doi:10.1016/bs.apcsb.2019.01.001 73.Kadel S, Kovats S. Sex Hormones Regulate Innate Immune Cells and Promote Sex Differences in Respiratory Virus Infection. Front Immunol. 2018;9:1653. doi:10.3389/fimmu.2018.01653 74.Northoff H, Symons S, Zieker D, et al. Gender- and menstrual phase dependent regulation of inflammatory gene expression in response to aerobic exercise. Exerc Immunol Rev. 2008;14:86-103. 75.Ng YF, Ng E, Lim EW, Prakash KM, Tan LCS, Tan EK. Case-control study of hypertension and Parkinson's disease. NPJ Parkinsons Dis. Jul 21 2021;7(1):63. doi:10.1038/s41531-021-00202-w 76.Chen J, Zhang C, Wu Y, Zhang D. Association between Hypertension and the Risk of Parkinson's Disease: A Meta-Analysis of Analytical Studies. Neuroepidemiology. 2019;52(3-4):181-192. doi:10.1159/000496977 77.Hou L, Li Q, Jiang L, et al. Hypertension and Diagnosis of Parkinson's Disease: A Meta-Analysis of Cohort Studies. Front Neurol. 2018;9:162. doi:10.3389/fneur.2018.00162 78.Qiu C, Hu G, Kivipelto M, et al. Association of blood pressure and hypertension with the risk of Parkinson disease: the National FINRISK Study. Hypertension. Jun 2011;57(6):1094-100. doi:10.1161/hypertensionaha.111.171249 79.Paganini-Hill A. Risk factors for parkinson's disease: the leisure world cohort study. Neuroepidemiology. May 2001;20(2):118-24. doi:10.1159/000054770 80.Simmering JE, Welsh MJ, Schultz J, Narayanan NS. Use of Glycolysis-Enhancing Drugs and Risk of Parkinson's Disease. Mov Disord. Nov 2022;37(11):2210-2216. doi:10.1002/mds.29184 81.Lin HC, Tseng YF, Shen AL, Chao JC, Hsu CY, Lin HL. Association of Angiotensin Receptor Blockers with Incident Parkinson Disease in Patients with Hypertension: A Retrospective Cohort Study. Am J Med. Aug 2022;135(8):1001-1007. doi:10.1016/j.amjmed.2022.04.029 82.Simmering JE, Welsh MJ, Liu L, Narayanan NS, Pottegård A. Association of Glycolysis-Enhancing α-1 Blockers With Risk of Developing Parkinson Disease. JAMA Neurol. Apr 1 2021;78(4):407-413. doi:10.1001/jamaneurol.2020.5157 83.Lee YC, Lin CH, Wu RM, Lin JW, Chang CH, Lai MS. Antihypertensive agents and risk of Parkinson's disease: a nationwide cohort study. PLoS One. 2014;9(6):e98961. doi:10.1371/journal.pone.0098961 84.The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science. Sep 11 2020;369(6509):1318-1330. doi:10.1126/science.aaz1776 85.Huang D, Zhou Y, Yi X, et al. VannoPortal: multiscale functional annotation of human genetic variants for interrogating molecular mechanism of traits and diseases. Nucleic Acids Research. 2021;50(D1):D1408-D1416. doi:10.1093/nar/gkab853
|