一、英文文獻
[1]ASTM C597-02.,2002, Standard Test Method for Pulse Velocity Through Concrete.
[2]ASTM C805.,2008, Standard Test Method for Rebound Number of Hardened Concrete, Annual Book of ASTM Standards, Vol.04.02.
[3]Albawi, S., Mohammed, T. A., & Al-Zawi, S.,2017, “Understanding of a convolutional neural network”. In 2017 International Conference on Engineering and Technology , ICET, pp. 1-6.
[4]Almutairi, M., Nikitas, N., Abdeljaber, O., Avci, O., & Bocian, M. ,2021, “A methodological approach towards evaluating structural damage severity using 1D CNNs”. In Structures ,Vol. 34, pp. 4435-4446, Elsevier.
[5]Alwash, M., Breysse, D., Sbartaï, Z. M., Szilágyi, K., & Borosnyói, A.,2017,” Factors affecting the reliability of assessing the concrete strength by rebound hammer and cores”, Construction and Building Materials, 140, 354-363.
[6]Bogas, J. A., Gomes, M. G., & Gomes, A.,2013, “Compressive strength evaluation of structural lightweight concrete by non-destructive ultrasonic pulse velocity method”, Ultrasonics, 53(5), 962-972.
[7]Breccolotti, M., Bonfigli, M. F., & Materazzi, A. L.,2013, “Influence of carbonation depth on concrete strength evaluation carried out using the SonReb method. NDT & E International”, 59, 96-104.
[8]Carino, N. J., & Malhotra, V. M. (Eds.).,2004, “Handbook on nondestructive testing of concrete”. CRC press.
[9]Choi, Y., Yoon, G., & Kim, J.,2021, “Unsupervised learning algorithm for signal validation in emergency situations at nuclear power plants”, Nuclear Engineering and Technology.
[10]Cristofaro, M. T., Viti, S., & Tanganelli, M.,2020, “New predictive models to evaluate concrete compressive strength using the SonReb method”. Journal of Building Engineering, 27, 100962.
[11]Cui, F., Ning, M., Shen, J., & Shu, X. ,2022, “Automatic recognition and tracking of highway layer-interface using Faster R-CNN”. Journal of Applied Geophysics, 196, 104477.
[12]Deng, L., & Yu, D.,2014, “Deep learning: methods and applications.Foundations and trends in signal processing”, 7(3–4), 197-387.
[13]Du, B., Liu, Y., & Tian, G.,2020, “Improving Motor Imagery EEG Classification by CNN with Data Augmentation”. In 2020 IEEE 19th International Conference on Cognitive Informatics & Cognitive Computing (ICCI* CC) (pp. 111-118).
[14]Fawzi, A., Samulowitz, H., Turaga, D., & Frossard, P. ,2016, “Adaptive data augmentation for image classification”, In 2016 IEEE international conference on image processing (ICIP) (pp. 3688-3692).
[15]French, R. M.,2000, “The Turing Test: the first 50 years. Trends in cognitive sciences”, 4(3), 115-122.
[16]Ghosh, R., Sagar, S. P., Kumar, A., Gupta, S. K., & Kumar, S. ,2018, “Estimation of geopolymer concrete strength from ultrasonic pulse velocity (UPV) using high power pulser”. Journal of building engineering, 16, 39-44.
[17]H Kim, H Kim, YW Hong, H Byun,2018,” Detecting Construction Equipment Using a Region-Based Fully Convolutional Network and Transfer Learning”, Journal of Computing in Civil Engineering, Volume 32.Issue 2.
[18]Hoła, J., & Schabowicz, K.,2005, “New technique of nondestructive assessment of concrete strength using artificial intelligence”. NDT & E International, 38(4), 251-259.
[19]Jo, H., Na, Y. H., & Song, J. B.,2017, “ Data augmentation using synthesized images for object detection”, In 2017 17th International Conference on Control, Automation and Systems (ICCAS),pp. 1035-1038.
[20]Kazemi, M., Khodaiyan, F., & Hosseini, S. S.,2019, “Eggplant peel as a high potential source of high methylated pectin: Ultrasonic extraction optimization and characterization”, Lwt, 105, 182-189.
[21]Kewalramani, M. A., & Gupta, R.,2006, “Concrete compressive strength prediction using ultrasonic pulse velocity through artificial neural networks”, Automation in Construction, 15(3), 374-379.
[22]Kim, S., Lee, K., Lee, M., Lee, J., Ahn, T., & Lim, J. T.,2021, “Evaluation of saturation changes during gas hydrate dissociation core experiment using deep learning with data augmentation”, Journal of Petroleum Science and Engineering, 109820.
[23]Kumar, P., Sharma, A., & Kota, S. R.,2021, “Automatic Multiclass Instance Segmentation of Concrete Damage Using Deep Learning Model”. IEEE Access, 9, 90330-90345.
[24]Kusrini, K., Suputa, S., Setyanto, A., Agastya, I. M. A., Priantoro, H., Chandramouli, K., & Izquierdo, E.,2020, “Data augmentation for automated pest classification in Mango farms”, Computers and Electronics in Agriculture, 179, 105842.
[25]Learned-Miller, E. G.,2014, Introduction to supervised learning. I: Department of Computer Science, University of Massachusetts.
[26]Ligthart, A., Catal, C., & Tekinerdogan, B.,2021,” Analyzing the effectiveness of semi-supervised learning approaches for opinion spam classification”, Applied Soft Computing, 101, 107023.
[27]Mohammed, B. S., Adamu, M., & Liew, M. S.,2018,” Evaluating the effect of crumb rubber and nano silica on the properties of high volume fly ash roller compacted concrete pavement using non-destructive techniques”, Case studies in construction materials, 8, 380-391.
[28]Naik T. R. and Malhotra V. M.,1991, “The Ultrasonic Pulse Velocity Method in CRC Handbook on Nondestructive Testing of Concrete”, pp. 169-188, CRC Press, Boca Raton, Florida.
[29]Naskar, S., & Chakraborty, A. K. ,2016, “Effect of nano materials in geopolymer concrete”, Perspectives in science, 8, 273-275.
[30]Nobile, L.,2015, “Prediction of concrete compressive strength by combined non-destructive methods”. Meccanica,Springer, 50(2), 411-417.
[31]Nobile, L., & Bonagura, M.,2013,”Accuracy of non-destructive evaluation of concrete compression strength”, In The 12th International Conference of the Slovenian Society for Non-Destructive Testing, Portorož, Slovenia.
[32]Panedpojaman, P., & Tonnayopas, D.,2018, “Rebound hammer test to estimate compressive strength of heat exposed concrete”,Construction and Building Materials, 172, 387-395.
[33]Provost, F., & Kohavi, R.,1998,”Glossary of terms”, Journal of Machine Learning, 30(2-3), 271-274.
[34]S. Hochreiter, Y. Bengio, P. Frasconi, and J. Schmidhuber.,2001, “Gradient flow in recurrent nets: the difficulty of learning long-term dependencies”, In S. C. Kremer and J. F. Kolen, editors, A Field Guide to Dynamical Recurrent Neural Networks. IEEE Press.
[35]Sastrawan, I. K., Bayupati, I. P. A., & Arsa, D. M. S. ,2021, “Detection of fake news using deep learning CNN–RNN based methods”, ICT Express.
[36]Shariq, M., Prasad, J., & Masood, A.,2013, “Studies in ultrasonic pulse velocity of concrete containing GGBFS”, Construction and Building Materials, 40, 944-950.
[37]Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., ... & Hassabis, D,2016, “Mastering the game of Go with deep neural networks and tree search” ,Nature, 529(7587), 484-489.
[38]Trtnik, G., Kavčič, F., & Turk, G.,2009, “Prediction of concrete strength using ultrasonic pulse velocity and artificial neural networks”, Ultrasonics ,49(1), 53-60.
[39]Tsioulou, O., Lampropoulos, A., & Paschalis, S.,2017, “Combined non-destructive testing (NDT) method for the evaluation of the mechanical characteristics of ultra high performance fibre reinforced concrete (UHPFRC)”, Construction and Building Materials, 131, 66-77.
[40]Wang, F. Y., Zhang, J. J., Zheng, X., Wang, X., Yuan, Y., Dai, X., ... & Yang, L. ,2016, “Where does AlphaGo go: From church-turing thesis to AlphaGo thesis and beyond”, IEEE/CAA Journal of Automatica Sinica, 3(2), 113-120.
[41]Xiao, B., Zhang, Y., Chen, Y., & Yin, X. (2021). A semi-supervised learning detection method for vision-based monitoring of construction sites by integrating teacher-student networks and data augmentation. Advanced Engineering Informatics, 50, 101372.
[42]Yakimovich, A., Beaugnon, A., Huang, Y., & Ozkirimli, E.,2021, “Labels in a haystack: Approaches beyond supervised learning in biomedical applications”, Patterns, 2(12), 100383.
[43]Zhu, X., & Goldberg, A. B.,2009,”Introduction to semi-supervised learning”, Synthesis lectures on artificial intelligence and machine learning, 3(1), 1-130.
二、中文文獻
[1]王俊揚,1998,非破壞性混凝土品質檢測系統之研發與應用, 國立台灣大學,碩士論文。[2]王勝榮,2019,應用卷積神經網路於預測台灣鋼筋價格漲幅之研究,國立成功大學,碩士論文。[3]王嘉聖,2001,反彈錘有效性之研究,逢甲大學,碩士論文。[4]沈永年、林彥余,2008,“混凝土版抗壓強度與反彈錘數之關係研究”,高雄應用科技大學學報,第37卷,第5期。
[5]林國榮,1996,超音波縱波波速對不同性質混凝土強度關係之研究,國立中興大學,碩士論文。[6]林錫國,2006,反彈錘法在卜作嵐混凝土強度檢測評估之應用,國立中興大學,碩士論文。[7]莊凌雲,2020,使用無人機飛行載具及基於卷積神經網路辨識建築物外牆裂縫檢測之研究,國立高雄科技大學,碩士論文。[8]陳穎君,2021,應用機器學習於混凝土抗壓強度預測及RC建築梁柱設計,國立台灣大學,碩士論文。[9]程理明,1999,老舊RC 建築物強度非破壞檢測方法比較研究,中華大學,碩士論文。[10]魏士翔,2008,“應用電子式反彈錘及適應性類神經模糊推論系統預測混凝土抗壓強度”,技術學刊,第28卷,第2期。