[1]Thornley, R. H., & Wilson, B. (1972), “A review of some of the principles involved in chuck design,” Production Engineer, Vol. 51(3), pp. 87-97.
[2]Ippolito, R., Zompi, A., & Levi, R. (1985), “Power Actuated Three-Jaw Chucks: Analysis of Gripping Action and Implications,” CIRP Annals, Vol. 34(1), pp. 323–326.
[3]Dol, M., & Masuko, M. (1986), “Considerations of Chucking Force in Chuck Work,” Bulletin of JSME, Vol. 29(250), pp. 1344–1349.
[4]A. H. Slocum. (1992), Precision Machine Design, Prentice-Hall, Society of Manufacturing Engineers Dearborn (MI), USA.
[5]Nyamekye, K., & Mudiam, S. S. (1992), “A model for predicting the initial static gripping force in lathe chucks,” The International Journal of Advanced Manufacturing Technology, Vol. 7(5), pp. 286–291.
[6]張耀勳 (1992) ,油壓夾頭應用技術,機械月刊第 208 期。
[7]黃松禎 (1998),油壓夾頭機構與夾持力探討,機械月刊第 275 期。
[8]Feng, P. F., Yu, D. W., Wu, Z. J., & Uhlmann, E. (2008), “Jaw-chuck stiffness and its influence on dynamic clamping force during high-speed turning,” International Journal of Machine Tools and Manufacture, Vol. 48(11), pp. 1268–1275.
[9]Rahman, M., & Tsutsumi, M. (1993), “Effect of spindle speed on clamping force in turning,” Journal of Materials Processing Technology, Vol. 38(1-2), pp. 407–415.
[10]徐美瑛 (2009),油壓夾頭應力分析及改善設計,建國科技大學自動化工程暨機電光系統碩士論文。[11]Maracekova, M., Zvoncan, & M. Görög, A. (2012), “Effect of clamping pressure on parts inaccuracy in turning,” Tehnicki Vjesnik, Vol.19, pp. 509-512.
[12]Basavaraja, J. S., & Mujawar, S. M. S. (2014). “Modelling, simulation and analysis of gripping force loss in high speed power chuck,” Procedia Materials Science, Vol.5, pp.1417–1423.
[13]Estrems, M., Arizmendi, M., Cumbicus, W. E., & López, A. (2015). “Measurement of clamping forces in a 3-jaw chuck through an instrumented aluminum ring,” Procedia Engineering, Vol. 132, pp. 456–463.
[14]Estrems, M., Carrero-Blanco, J., Cumbicus, W. E., de Francisco, O., & Sánchez, H. T. (2017), “Contact mechanics applied to the machining of thin rings,” Procedia Manufacturing, Vol. 13, pp. 655–662.
[15]Xie, S. M., Li, C. Y., Wang, J., Li, W. P., & Niu, C. L. (2019), “Study on welded joints stress state grade of aluminum alloy EMU body,” Procedia Structural Integrity, Vol. 22, pp. 353–360.
[16]Norman, V., & Calmunger, M. (2018), “On the micro- and macroscopic elastoplastic deformation behaviour of cast iron when subjected to cyclic loading,” International Journal of Plasticity.
[17]Ghahremaninezhad, A., & Ravi-Chandar, K. (2012), “Deformation and failure in nodular cast iron,” Acta Materialia, Vol. 60(5), pp. 2359–2368.
[18]Witek, L., & Zelek, P. (2019), “Stress and failure analysis of the connecting rod of diesel engine,” Engineering Failure Analysis, Vol. 97, pp. 374-382.
[19]INCE, A., & GLINKA, G. (2011), “A modification of Morrow and Smith-Watson-Topper mean stress correction models,” Fatigue & Fracture of Engineering Materials & Structures, 3Vol. 4(11), pp. 854–867.
[20]Lorenzo, F., & Laird, C. (1984), “A new approach to predicting fatigue life behavior under the action of mean stresses,” Materials Science and Engineering, Vol. 62(2), pp. 205–210.
[21]DOWLING, N. E., CALHOUN, C. A., & ARCARI, A. (2009), “Mean stress effects in stress-life fatigue and the Walker equation,” Fatigue & Fracture of Engineering Materials & Structures, Vol.32(3), pp. 163–179.
[22]Vadgeri, S. S., Patil, S. R., & Chavan, S., (2018), “Static and fatigue analysis of lathe spindle for maximum cutting force,” Materials Today: Proceedings, Vol. 5(2), pp. 4438–4444.
[23]AutoGrip machinery co., Ltd Catalog.
[24]Tsai, H. H., & Hocheng, H. (1998), “Investigation of the transient thermal deflection and stresses of the workpiece in surface grinding with the application of a cryogenic magnetic chuck,” Journal of Materials Processing Technology, Vol. 79(1-3), pp. 177–184.
[25]Willidal, T., Bauer, W., & Schumacher, P. (2005), “Stress/strain behaviour and fatigue limit of grey cast iron,” Materials Science and Engineering: A, Vol. 413-414, pp. 578–582.
[26]Zhan, Y., Li, Y., Zhang, E., Ge, Y., & Liu, C. (2019), “Laser ultrasonic technology for residual stress measurement of 7075 aluminum alloy friction stir welding,” Applied Acoustics, Vol. 145, pp. 52–59.
[27]Altenbach, H., Stoychev, G. B., & Tushtev, K. N. (2001), “On elastoplastic deformation of grey cast iron,” International Journal of Plasticity, Vol. 17(5), pp. 719–736.
[28]Röger, M., Prahl, C., Pernpeintner, J., & Sutter, F. (2017), “New methods and instruments for performance and durability assessment,” The Performance of Concentrated Solar Power (CSP) Systems, pp. 205–252.
[29]Zhao, B., Shen, F., Cui, Y., Xie, Y., & Zhou, K. (2017), “Damage analysis for an elastic-plastic body in cylindrical contact with a rigid plane,” Tribology International, Vol. 115, pp. 18–27.
[30]Ahmed A. Shabana (2005), “Dynamics of multibody systems,” third edition, University of Illinois, Chicago.
[31]Ema, S., & Marui, E. (1994), “Chucking Performance of a Wedge-Type Power Chuck,” Journal of Engineering for Industry, Vol. 116(1), pp. 70.
[32]KADOWAKI, Y. (1986), “Development of Chucking Condition Sensor for Three-jaw Scroll Chuck,” Bulletin of JSME, Vol. 29(248), pp. 625–631.
[33]Nowag, L., Sölter, J., & Brinksmeier, E. (2007), “Influence of turning parameters on distortion of bearing rings,” Production Engineering, Vol. 1(2), pp. 135–139.
[34]Zhu, S.-P., Lei, Q., Huang, H.-Z., Yang, Y.-J., & Peng, W. (2016), “Mean stress effect correction in strain energy-based fatigue life prediction of metals,” International Journal of Damage Mechanics, Vol. 26(8), pp. 1219–1241.
[35]Golos, K., & Ellyin, F. (1988), “A Total Strain Energy Density Theory for Cumulative Fatigue Damage,” Journal of Pressure Vessel Technology, Vol. pp. 110(1), 36.
[36]Kamaya, M., & Kawakubo, M. (2015), “Mean stress effect on fatigue strength of stainless steel,” International Journal of Fatigue, Vol.74, pp.20–29.
[37]Tsutsumi, M. (1989), “Chucking force distribution of collet chuck holders for machining centers,” Journal of Mechanical Working Technology, Vol. 20, pp. 491–501.
[38]Raafat, E., Nassef, A., El-hadek, M., & El-Megharbel, A. (2019), “Fatigue and thermal stress analysis of submerged steel pipes using ANSYS software,” Ocean Engineering, Vol. 193, pp. 106574.
[39]Stephens, R. I., Fatemi, A., Stephens, A. A. and Fuchs, H. O. (2001), “Metal Fatigue in Engineering,” John Wiley, New York.
[40]Goodman, J. (1930), “Mechanics Applied to Engineering,” Vol. 1, 9th edition. Longmans Green and Co., London.
[41]Morrow, J. (1968), “Fatigue properties of metals,” section 3.2. In: Fatigue Design Handbook, Pub. No. AE-4. SAE, Warrendale, PA.
[42]Manson, S. S., & Halford, G. R. (1981), “Practical implementation of the double linear damage rule and damage curve approach for treating cumulative fatigue damage,” International Journal of Fracture, Vol. 17(2), pp. 169–192.
[43]Smith, K. N., Watson, P. and Topper, T. H. (1970), “A stress-strain function for the fatigue of materials,” J. Mater. Vol. 5, pp. 767–778.
[44]Koh, S. K. and Stephens, R. I. (1991), “Mean stress effects on low cycle fatigue for a high strength steel,” Fatigue & Fracture of Engineering Material & Structure, Vol. 14, pp. 413–428.