|
[1]R. W. Picard, "Affective computing (No. 321)", M.I.T Media Laboratory Perceptual Computing Section Technical Report No. 321, 1995. [2]H. Silva, A. Lourenço, and A. Fred, "In-vehicle driver recognition based on hand ECG signals," in Proceedings of the 2012 ACM international conference on Intelligent User Interfaces, pp. 25-28, 2012. doi: 10.1145/2166966.2166971 [3]J. Zhu et al., "Toward Depression Recognition Using EEG and Eye Tracking: An Ensemble Classification Model CBEM," 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 2019, pp. 782-786, doi: 10.1109/BIBM47256.2019.8983225. [4]A. Ghandeharioun et al., "Objective assessment of depressive symptoms with machine learning and wearable sensors data," 2017 Seventh International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 325-332, 2017, doi: 10.1109/ACII.2017.8273620. [5]L. Subramainan, M. A. Mahmoud, M. S. Ahmad and M. Z. M. Yusoff, "A conceptual emotion-based model to improve students engagement in a classroom using agent-based social simulation," 2016 4th International Conference on User Science and Engineering (i-USEr), pp. 149-154, 2016, doi: 10.1109/IUSER.2016.7857951. [6]H. Torkamaan and J. Ziegler, "A taxonomy of mood research and its applications in computer science," 2017 Seventh International Conference on Affective Computing and Intelligent Interaction (ACII), 2017, pp. 421-426, doi: 10.1109/ACII.2017.8273634. [7]K. Patel et al., "Facial Sentiment Analysis Using AI Techniques: State-of-the-Art, Taxonomies, and Challenges," in IEEE Access, vol. 8, pp. 90495-90519, 2020, doi: 10.1109/ACCESS.2020.2993803. [8] S. P. Ristiawanto, B. Irawan, and C. Setianingsih, "Pengenalan Ekspresi Wajah Berbasis Convolutional Neural Network Menggunakan Arsitektur Residual Network-50," eProceedings of Engineering, vol. 8, no. 5, 2021. [9]A. V. Savchenko, "Facial expression and attributes recognition based on multi-task learning of lightweight neural networks," arXiv, 2021, doi:10.48550/arXiv.2103.17107. [10]F. BELAL, "Benchmarking of Convolutional Neural Networks for Facial Expressions Recognition," Journal of Theoretical and Applied Information Technology, vol. 98, no. 18, 2020. [11] N. S. Abdulsattar and M. N. Hussain, "Facial Expression Recognition using Transfer Learning and Fine-tuning Strategies: A Comparative Study," 2022 International Conference on Computer Science and Software Engineering (CSASE), pp. 101-106, 2022, doi: 10.1109/CSASE51777.2022.9759754. [12] Hong-Wei Ng, Viet Dung Nguyen, Vassilios Vonikakis, and Stefan Winkler, “Deep Learning for Emotion Recognition on Small Datasets using Transfer Learning”, In Proceedings of the 2015 ACM on International Conference on Multimodal Interaction , pp.443–449, 2015, doi:10.1145/2818346.2830593 [13] A. Ghandeharioun et al., "Objective assessment of depressive symptoms with machine learning and wearable sensors data," 2017 Seventh International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 325-332, 2017, doi: 10.1109/ACII.2017.8273620. [14] Y. S. Kong, V. Suresh, J. Soh, and D. C. Ong, "A Systematic Evaluation of Domain Adaptation in Facial Expression Recognition," arXiv, 2021, doi:10.48550/arXiv.2106.15453 [15]P. Ekman et al., "Universals and cultural differences in the judgments of facial expressions of emotion," Journal of personality and social psychology, vol. 53, no. 4, p. 712, 1987, doi:10.1037/0022-3514.53.4.712 [16] Akhand, M. A. H, Shuvendu Roy, Nazmul Siddique, Md Abdus Samad Kamal and Tetsuya Shimamura, "Facial Emotion Recognition Using Transfer Learning in the Deep CNN", Electronics,vol 10, no. 9, 2021, doi: 10.3390/electronics10091036 [17] Alom MZ, Taha TM, Yakopcic C, Westberg S, Sidike P, Nasrin MS, Hasan M, Van Essen BC, Awwal AAS, Asari VK, "A State-of-the-Art Survey on Deep Learning Theory and Architectures", Electronics, Vol.8, no.3, 2019, doi:10.3390/electronics8030292 [18] K.He et al, "Deep Residual Learning for Image Recognition", in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) , pp.770 - 778, 2016, doi: 10.1109/CVPR.2016.90 [19] F. Chollet, "Xception: Deep Learning with Depthwise Separable Convolutions",in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) , pp.1800-1807, 2017, doi: 10.1109/CVPR.2017.195 [20]C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, ‘‘Rethinking the inception architecture for computer vision,’’ in Proc. IEEE Conf.Comput. Vis. Pattern Recognit. (CVPR), Las Vegas, NV, USA, Jun. 2016, pp. 2818–2826.doi:10.1109/CVPR.2016.308 [21]G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, "Densely connected convolutional networks," 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) , pp. 2261 - 2269, 2017,doi: 10.1109/CVPR.2017.243 [22]M. Tan and Q. Le, "Efficientnet: Rethinking model scaling for convolutional neural networks," in Proceedings of the 36th International Conference on Machine Learning, Proceedings of Machine Learning Research(PMLR), 2019. [23] S. J. Pan and Q. Yang, "A Survey on Transfer Learning," in IEEE Transactions on Knowledge and Data Engineering, vol. 22, no. 10, pp. 1345-1359, 2010, doi: 10.1109/TKDE.2009.191. [24]C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu, "A survey on deep transfer learning," in International conference on artificial neural networks, Springer, pp. 270-279, 2018, doi:10.1007/978-3-030-01424-7_27. [25]J. Deng, W. Dong, R. Socher, L. Li, L. Kai, and F.-F. Li, "ImageNet: A large-scale hierarchical image database," in 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248-255,June 2009, doi: 10.1109/CVPR.2009.5206848. [26] Ko, Byoung Chul, "A brief review of facial emotion recognition based on visual information," Sensors, vol. 18, no. 2, 2018, doi:10.3390/s18020401 [27]A. Mollahosseini, B. Hasani and M. H. Mahoor, "AffectNet: A Database for Facial Expression, Valence, and Arousal Computing in the Wild," in IEEE Transactions on Affective Computing, vol. 10, no. 1, pp. 18-31, 1 Jan.-March 2019, doi: 10.1109/TAFFC.2017.2740923. [28]I. J. Goodfellow et al., "Challenges in representation learning: A report on three machine learning contests," in International conference on neural information processing, Springer, pp. 117-124, 2013, doi:10.1007/978-3-642-42051-1_16 [29]P. Giannopoulos, I. Perikos, and I. Hatzilygeroudis, "Deep learning approaches for facial emotion recognition: A case study on FER-2013," in Advances in hybridization of intelligent methods: Springer, pp. 1-16, 2018, doi:10.1007/978-3-319-66790-4_1. [30]Tom,"資料的正規化(Normalization)及標準化(Standardization)." [online] Available: https://aifreeblog.herokuapp.com/posts/54/data_science_203/ [31]S. Picek, A. Heuser, A. Jovic, S. Bhasin, and F. Regazzoni, "The curse of class imbalance and conflicting metrics with machine learning for side-channel evaluations," IACR Transactions on Cryptographic Hardware and Embedded Systems, vol. 2019, no. 1, pp. 1-29, 2019, doi:10.13154/tches.v2019.i1.209-237. [32]А. В. Савченко, "Вычислительно эффективные алгоритмы классификации изображений на основе последовательного анализа," Записки научных семинаров ПОМИ, vol. 499, no. 0, pp. 267-283, 2021.doi: 10.36535/0235-5019-2020-12-1 [33]A. Radford et al, "Learning transferable visual models from natural language supervision," in International Conference on Machine Learning, Proceedings of Machine Learning Research(PMLR), vol.139, pp. 8748-8763,2021.
|