|
[1]L. G. Gerling, S. Mahato, C. Voz, R. Alcubilla, and J. Puigdollers, “Characterization of transition metal oxide/silicon heterojunctions for solar cell applications,” Applied Sciences, vol. 5, pp. 695-705, 2015. [2]L. G. Gerling, S. Mahato, A. M. Vilches, G. Masmitja, P. Ortega, C. Voz, R. Alcubilla, and J. Puigdollers, “Transition metal oxides as hole-selective contacts in silicon heterojunctions solar cells,” Solar Energy Materials & Solar Cells, vol. 145, pp. 109-115, 2016. [3]J. Meyer, S. Hamwi, M. Kroger, W. Kowalsky, T. Riedl, and A. Kahn, “Transition metal oxides for organic electronics: energetics, device physics and Applications,” Advanced Materials, vol. 24, pp. 5408-5427, 2012. [4]S. Q. Hussain, K. Mallem, M. A. Khan, M. Q. Khokhar, Y. Lee, J. Park, K. S. Lee, Y. Kim, E. C. Cho, Y. H. Cho, and J. Yi, “Versatile hole carrier selective MoOx contact for high efficiency silicon heterojunction solar cells: a review,” Transactions on Electrical and Electronic Materials, vol. 20, pp. 1-6, 2019. [5]J. Yu, Y. Fu, L. Zhu, Z. Yang, X. Yang, L. Ding, Y. Zeng, B. Yan, J. Tang, P. Gao, and J. Ye, “Heterojunction solar cells with asymmetrically carrier-selective contact structure of molybdenum-oxide/silicon/magnesium-oxide,” Solar Energy, vol. 159, pp. 704-709, 2018. [6]J. Bullock, D. Yan, A. Cuevas, Y. Wan, and C. Samundsett, “N- and p-type silicon solar cells with molybdenum oxide hole contacts,” Energy Procedia, vol. 77, pp. 446-450, 2015. [7]J. Geissbuhler, J. Werner, S. M. D. Nicolas, L. Barraud, A. H. Wyser, M. Despeisse, S. Nicolay, A. Tomasi, B. Niesen, S. D. Wolf, and C. Ballif, “22.5 % efficient silicon heterojunction solar cell with molybdenum oxide hole collector,” Applied Physics Letters, vol. 107, p. 081601, 2015. [8]M. T. Greiner, L. Chai, M. G. Helander, W. M. Tang, and Z. H. Lu, “Metal/metal-oxide interfaces: how metal contacts affect the work function and band structure of MoO3,” Advanced Functional Materials, vol. 23, pp. 215-226, 2013. [9]S. Cao, J. Li, Y. Lin, T. Pan, G. Du, J. Zhang, L. Yang, X. Chen, L. Lu, N. Min, M. Yin, and D. Li, “Interfacial behavior and stability analysis of p-type crystalline silicon solar cells based on hole-selective MoOx/metal contacts,” Solar RRL., vol. 3, p. 1900274, 2019. [10]Irfan, H. Ding, Y. Gao, C. Small, D. Y. Kim, J. Subbiah, and F. So, “Energy level evolution of air and oxygen exposed molybdenum trioxide films,” Applied Physics Letters, vol. 96, p. 243307, 2010. [11]I. Irfan, A. J. Turinske, Z. Bao, and Y. Gao, “Work function recovery of air exposed molybdenum oxide thin films,” Applied Physics Letters, vol. 101, p. 093305, 2012. [12]K. Mallem, S. Kim, S. Chowdary, S. Kim, J. Park, J. Kim, S. Dutta, M. Ju, Y. Kim, Y. H. Cho, E. C. Cho, and J. Yi, “Influence of molybdenum oxide thickness, electronic structure, and work function on the performance of hole selective silicon heterojunction solar cells,” 26th International Workshop on Active-Matrix Flat Panel Displays and Devices (AM-FPD), p. 18976090, 2019. [13]S. Q. Hussain, K. Mallem, Y. J. Kim, A. H. T. Le, M. Q. Khokhar, S. Kim, S. Dutta, S. Sanyal, Y. Kim, J. Park, Y. Lee, Y. H. Cho, E. C. Cho, and J. Yi, “Ambient annealing influence on surface passivation and stoichiometric analysis of molybdenum oxide layer for carrier selective contact solar cells,” Materials Science in Semiconductor Processing, vol. 91, pp. 267-274, 2019. [14]D. Ahiboz, H. Nasser, and R. Turan, “Admittance analysis of thermally evaporated-hole selective MoO3 on crystalline silicon,” 2016 International Renewable and Sustainable Energy Conference, p. 17031736, 2016. [15]H. Ali, S. Koul, G. Gregory, J. Bullock, A. Javey, A. Kushima, and K. O. Davis, “In situ transmission electron microscopy study of molybdenum oxide contacts for silicon solar cells,” Physica Status Solidi, vol. 216, p. 1800998, 2019. [16]S. Major and K. L. Chopra, “Indium-doped zinc oxide films as transparent electrodes for solar cells,” Solar Energy Materials, vol. 17, pp. 319-327, 1988. [17]K. J. Chen, F. Y. Hung, S. J. Chang, and Z. S. Hu, “Microstructures, optical and electrical properties of In-doped ZnO thin films prepared by sol–gel method,” Applied Surface Science, vol. 255, pp. 6308-6312, 2009. [18]Y. Cao, L. Miao, S. Tanemura, M. Tanemura, Y. Kuno, Y. Hayashi, and Y. Mori, “Optical properties of indium-doped ZnO films,” Japanese Journal of Applied Physics, vol. 45, pp. 1623-1628, 2006. [19]M. Thambidurai, J. Y. Kima, C. Kang, N. Muthukumarasamy, H. J. Song, J. Song, Y. Ko, D. Velauthapillai, and C. Lee, “Enhanced photovoltaic performance of inverted organic solar cells with In-doped ZnO as an electron extraction layer,” Renewable Energy, vol. 66, pp. 433-442, 2014. [20]M. Khan, Z. Lan, and Y. Zeng, “Analysis of indium oxidation state on the electronic structure and optical properties of TiO2,” Materials, vol. 11, p. 952, 2018. [21]C. S. Hsu, H. Y. Hsieh, and J. S. Fang, “Enhancement of oxidation resistance and electrical properties of indium-doped copper thin films,” Journal of Electronic Materials, vol. 37, pp. 852-859, 2008. [22]X. M. Cai, X. Q. Su, F. Ye, H. Wang, X. Q. Tian, D. P. Zhang, P. Fan, J. T. Luo, Z. H. Zheng, G. X. Liang, and V. A. L. Roy, “The n-type conduction of indium-doped Cu2O thin films fabricated by direct current magnetron co-sputtering,” Applied Physics Letters, vol. 107, p. 083901, 2015. [23]S. Y. Sun and J. L. Huang, “Properties of indium molybdenum oxide films fabricated via high-density plasma evaporation at room temperature,” Journal of Materials Research, vol. 20, pp. 247-255, 2005. [24]E. Elangovan, A. Marques, A. S. Viana, R. Martins, and E. Fortunato, “Some studies on highly transparent wide band gap indium molybdenum oxide thin films RF sputtered at room temperature,” Thin Solid Films, vol. 516, pp. 1359-1364, 2008. [25]H. Y. Chen, H. C. Su, C. H. Chen, K. L. Liu, C. M. Tsai, S. J. Yen, and T. R. Yew, “Indium-doped molybdenum oxide as a new p-type transparent conductive oxide,” Journal of Materials Chemistry, vol. 21, p. 5745, 2011. [26]S. Y. Sun, J. L. Huang, and D. F. Lii, “Effects of oxygen contents on the electrical and optical properties of indium molybdenum oxide films fabricated by high density plasma evaporation,” Journal of Vacuum Science & Technology A, vol. 22, p. 1235, 2004. [27]X. Li, W. Miao, Q. Zhang, L. Huang, Z. Zhang, and Z. Hua, “Preparation of molybdenum-doped indium oxide thin films using reactive direct-current magnetron sputtering,” Journal of Materials Research, vol. 20, pp. 1404-1408, 2005. [28]Y. Yoshida, T. A. Gessert, C. L. Perkins, and T. J. Coutts, “Development of radio-frequency magnetron sputtered indium molybdenum oxide,” Journal of Vacuum Science & Technology A, vol. 21, p. 1092, 2003. [29]R. K. Gupta, K. Ghosh, R. Patel, and P. K. Kahol, “Effect of thickness on optoelectrical properties of Mo-doped indium oxide films,” Applied Surface Science, vol. 255, pp. 3046-3048, 2008. [30]W. T. Liu, Q. J. Liu, and Z. T. Liu, “First-principles studies of structural, mechanical, electronic, optical properties and pressure-induced phase transition of CuInO2 polymorph,” Physica B, vol. 407, pp. 4665-4670, 2012. [31]C. K. Ghosh, “Electronic structure and optical properties of CuInO2 under equibiaxial strain,” Computational Materials Science, vol. 58, pp. 236-242, 2012. [32]B. Yang, Y. He, A. Polity, and B. K. Meyer, “Structural, optical and electrical properties of transparent conducting CuInO2 thin films prepared by RF sputtering,” Materials Research Society, vol. 865, pp. F14.7.1-F14.7.5, 2005. [33]B. Falabretti and J. Robertson, “Electronic structures and doping of SnO2, CuAlO2, and CuInO2,” Journal of Applied Physics, vol. 102, p. 123703, 2007. [34]D. Varandani, B. Singh, B. R. Mehta, M. Singh, and V. N. Singh, “Resistive switching mechanism in delafossite-transition metal oxide(CuInO2–CuO) bilayer structure,” Journal of Applied Physics, vol. 107, p.103703, 2010. [35]S. A. Mary, B. G. Nair, J. Naduvath, G. S. Okram, S. K. Remillard, P. V. Sreenivasan, and R. R. Philip, “Highly conductive n- and p-type CuInO thin films by reactive evaporation,” Journal of Alloys and Compounds, vol. 600, pp. 159-161, 2014. [36]H. Yanagi, T. Hase, S. Ibuki, K. Ueda, and H. Hosono, “Bipolarity in electrical conduction of transparent oxide semiconductor CuInO2 with delafossite structure,” Applied Physics Letters, vol. 78, pp. 1583-1585, 2001. [37]H. Yanagi, K. Ueda, H. Ohta, M. Orita, M. Hirano, and H. Hosono, “Fabrication of all oxide transparent p-n homojunction using bipolar CuInO2 semiconducting oxide with delafossite structure,” Solid State Communication, vol. 121, pp. 15-18, 2002. [38]H. S. Min, Y. C. Joo, and O. S. Song, “Effects of wafer cleaning and annealing on glass/silicon wafer direct bonding,” Journal of Electronic Packaging, vol. 126, pp. 120-123, 2004. [39]S. Y. Lien, C. H. Yang, C. H. Hsu, Y. S. Lin, C. C. Wang, and D. S. Wuu, “Optimization of textured structure on crystalline silicon wafer for heterojunction solar cell,” Materials Chemistry and Physics, vol. 133, pp. 63-68, 2012. [40]N. Ximello, H. Haverkamp, and G. Hahn, “A new KOH-etch solution to produce a random pyramid texture on monocrystalline silicon at elevated process temperatures and shortened process times,” Proceedings of the 24th European Photovoltaic Solar Energy Conference, pp. 1958-1960, 2009. [41]S. Maekawa, “Diffusion of phosphorus into silicon,” Journal of the Physical Society of Japan, vol. 17, pp. 1592-1597, 1962. [42]E. G. Tabares, D. Martin, I. Garcia, and I. R. Stolle, “Understanding phosphorus diffusion into silicon in a MOVPE environment for III–V on silicon solar cells,” Solar Energy Materials & Solar Cells, vol. 116, pp. 61-67, 2013. [43]E. Cornagliotti, M. Ngamo, L. Tous, R. Russell, J. Horzel, D. Hendrickx, B. Douhard, V. Prajapati, T. Janssens, and J Poortmans, “Integration of inline single-side wet emitter etch in PERC cell manufacturing,” Energy Procedia, vol. 27, pp. 624-630, 2012. [44]M. Lippold, F. Buchholz, C. Gondek, F. Honeit, E. Wefringhaus, and E. Kroke, “Texturing of SiC-slurry and diamond wire sawn silicon wafers by HF–HNO3–H2SO4 mixtures,” Solar Energy Materials & Solar Cells, vol. 127, pp. 104-110, 2014. [45]Y. Wan, K. R. McIntosh, and A. F. Thomson, “Characterisation and optimisation of PECVD SiNx as an antireflection coating and passivation layer for silicon solar cells,” AIP Advances, vol. 3, p. 032113, 2013. [46]C. H. Lin, S. Y. Tsai, S. P. Hsu, and M. H. Hsieh, “Investigation of Ag-bulk/glassy-phase/Si heterostructures of printed Ag contacts on crystalline Si solar cells,” Solar Energy Materials & Solar Cells, vol. 92, pp. 1011-1015, 2008. [47]J. D. Fields, M. I. Ahmad, V. L. Pool, J. Yu, D. G. V. Campen, P. A. Parilla, M. F. Toney, and M. F. A. M. V. Hest, “The formation mechanism for printed silver-contacts for silicon solar cells,” Nature Communications, vol. 7, p. 11143, 2016.
|