|
[1]X. Peng, Y. Cha, H. Zhang, Y. Li, and J. J. O. Ye, "Light intensity modulation temperature sensor based on U-shaped bent single-mode fiber," vol. 130, pp. 813-817, 2017. [2]Y. Guo, Y. Zhang, and G. J. O. Yi, "Displacement and temperature sensor based on whispering gallery effect within unsymmetrical U-type fiber structure," vol. 238, p. 166459, 2021. [3]A. J. M. o. C. M. Pan’kov, "Piezoelectroluminescent optical fiber sensor for diagnostics of the stress state and defectoscopy of composites," vol. 53, pp. 229-242, 2017. [4]M. Wang, Q. Ma, L. Li, Z. Wang, and B. J. O. F. T. Peng, "Micro displacement sensing based on fused taper fiber coupler," vol. 68, p. 102779, 2022. [5]L. Zhu et al., "Intensity-demodulated fiber-optic vector magnetic field sensor based on fiber-optic evanescent field," vol. 152, p. 108087, 2022. [6]C. Teng et al., "Double-side polished U-shape plastic optical fiber based SPR sensor for the simultaneous measurement of refractive index and temperature," vol. 525, p. 128844, 2022. [7]J. Hou, J. Dai, F. Zhang, and M. J. I. P. T. L. Yang, "Advanced Fiber-Optic Relative Humidity Sensor Based on Graphene Quantum Dots Doped Polyimide Coating," vol. 34, no. 14, pp. 725-728, 2022. [8]B. Gupta, H. Dodeja, A. J. O. Tomar, and q. electronics, "Fibre-optic evanescent field absorption sensor based on a U-shaped probe," vol. 28, pp. 1629-1639, 1996. [9]C. G. Danny, M. D. Raj, and V. Sai, "Ray optics model for light attenuation in U-bent fiber optic sensors," in 2018 IEEE SENSORS, 2018: IEEE, pp. 1-4. [10]A. S. Rajamani, M. Divagar, V. J. S. Sai, and A. A. Physical, "Plastic fiber optic sensor for continuous liquid level monitoring," vol. 296, pp. 192-199, 2019. [11]M. Divagar, A. Gowri, S. John, V. J. S. Sai, and A. B. Chemical, "Graphene oxide coated U-bent plastic optical fiber based chemical sensor for organic solvents," vol. 262, pp. 1006-1012, 2018. [12]K.-C. Chen, Y.-L. Li, C.-W. Wu, and C.-C. J. S. Chiang, "Glucose sensor using U-shaped optical fiber probe with gold nanoparticles and glucose oxidase," vol. 18, no. 4, p. 1217, 2018. [13]R. Bharadwaj et al., "Evanescent wave absorbance based fiber optic biosensor for label-free detection of E. coli at 280 nm wavelength," vol. 26, no. 7, pp. 3367-3370, 2011. [14]G. M. Shukla, N. Punjabi, T. Kundu, and S. J. I. S. J. Mukherji, "Optimization of plasmonic U-shaped optical fiber sensor for mercury ions detection using glucose capped silver nanoparticles," vol. 19, no. 9, pp. 3224-3231, 2019. [15]D. Murugan, H. Bhatia, V. Sai, and J. J. T. o. t. I. N. A. o. E. Satija, "P-FAB: a fiber-optic biosensor device for rapid detection of COVID-19," vol. 5, pp. 211-215, 2020. [16]N. A. a. M. Zainuddin, M. M. Ariannejad, P. T. Arasu, S. W. Harun, and R. J. R. i. P. Zakaria, "Investigation of cladding thicknesses on silver SPR based side-polished optical fiber refractive-index sensor," vol. 13, p. 102255, 2019. [17]I. J. S. Ivanišević, "The Role of Silver Nanoparticles in Electrochemical Sensors for Aquatic Environmental Analysis," vol. 23, no. 7, p. 3692, 2023. [18]V. Priyamvada et al., "Fibre Optic Silver Plasmonic U-Bent Real Time Sensing Response to Accelerated Protein Conformation Kinetics," vol. 23, no. 1, p. 34, 2022. [19]A. O. Santos, A. Vaz, P. Rodrigues, A. C. Veloso, A. Venâncio, and A. M. J. C. Peres, "Thin films sensor devices for mycotoxins detection in foods: Applications and challenges," vol. 7, no. 1, p. 3, 2019. [20]W. M. Mukhtar et al., "Effect of noble metal thin film thicknesses on surface plasmon resonance (SPR) signal amplification," 2018. [21]Q. Wang, W.-M. J. O. Zhao, and L. i. Engineering, "A comprehensive review of lossy mode resonance-based fiber optic sensors," vol. 100, pp. 47-60, 2018. [22]F. Pilaquinga et al., "Colorimetric Detection and Adsorption of Mercury Using Silver Nanoparticles: A Bibliographic and Patent Review," vol. 11, no. 5, pp. 4-23, 2021. [23]A. M. E. Badawy et al., "Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions," vol. 44, no. 4, pp. 1260-1266, 2010. [24]R. A. Alvarez-Puebla and R. F. J. A. c. Aroca, "Synthesis of silver nanoparticles with controllable surface charge and their application to surface-enhanced Raman scattering," vol. 81, no. 6, pp. 2280-2285, 2009. [25]A. Esmaielzadeh Kandjani, Y. M. Sabri, M. Mohammad-Taheri, V. Bansal, S. K. J. E. S. Bhargava, and Technology, "Detect, remove and reuse: a new paradigm in sensing and removal of Hg (II) from wastewater via SERS-active ZnO/Ag nanoarrays," vol. 49, no. 3, pp. 1578-1584, 2015. [26]M. Levlin, E. Ikävalko, and T. J. F. j. o. a. c. Laitinen, "Adsorption of mercury on gold and silver surfaces," vol. 365, pp. 577-586, 1999. [27]J. Yang, T. Wang, N. Shi, and W.-P. J. A. S. S. Pan, "Immobilization of gaseous elemental mercury by Ag nanoparticles: A combined DFT and experimental study," vol. 591, p. 153217, 2022. [28]H. S. Chandwadkar et al., "Revisiting galvanic replacement between silver nanoparticles and mercury (II) ions in a cellulose membrane intended for optical assay application: Some new insights into silver-mercury interaction," vol. 602, p. 125140, 2020. [29]J. Qiu, S. Zhang, H. J. S. Zhao, and a. B. Chemical, "Recent applications of TiO2 nanomaterials in chemical sensing in aqueous media," vol. 160, no. 1, pp. 875-890, 2011. [30]Tian and L. J. T. J. o. P. C. B, "DFT description on electronic structure and optical absorption properties of anionic S-doped anatase TiO2," vol. 110, no. 36, pp. 17866-17871, 2006. [31]T. Zhu and S.-P. J. T. J. o. P. C. C. Gao, "The stability, electronic structure, and optical property of TiO2 polymorphs," vol. 118, no. 21, pp. 11385-11396, 2014. [32]M. Fitra, I. Daut, M. Irwanto, N. Gomesh, and Y. J. E. P. Irwan, "TiO2 dye sensitized solar cells cathode using recycle battery," vol. 36, pp. 333-340, 2013. [33]A. Meng, L. Zhang, B. Cheng, and J. J. A. M. Yu, "Dual cocatalysts in TiO2 photocatalysis," vol. 31, no. 30, p. 1807660, 2019. [34]Z. Li et al., "Nano TiO2-engineered anti-corrosion concrete for sewage system," vol. 337, p. 130508, 2022. [35]K. Nakata, A. J. J. o. p. Fujishima, and p. C. P. Reviews, "TiO2 photocatalysis: Design and applications," vol. 13, no. 3, pp. 169-189, 2012. [36]L. Jiang, Y. Wang, and C. J. P. E. Feng, "Application of photocatalytic technology in environmental safety," vol. 45, pp. 993-997, 2012. [37]M. Navarro, H. López, M. Sánchez, M. C. J. A. o. e. c. López, and toxicology, "The effect of industrial pollution on mercury levels in water, soil, and sludge in the coastal area of Motril, Southeast Spain," vol. 24, pp. 11-15, 1993. [38]A. B. Mukherjee, P. Bhattacharya, A. Sarkar, and R. Zevenhoven, "Mercury emissions from industrial sources in India and its effects in the environment," in Mercury fate and transport in the global atmosphere: Emissions, measurements and models: Springer, 2009, pp. 81-112. [39]F. Zahir, S. J. Rizwi, S. K. Haq, R. H. J. E. t. Khan, and pharmacology, "Low dose mercury toxicity and human health," vol. 20, no. 2, pp. 351-360, 2005. [40]M. Gilbertson and D. O. J. E. R. Carpenter, "An ecosystem approach to the health effects of mercury in the Great Lakes basin ecosystem," vol. 95, no. 3, pp. 240-246, 2004. [41]E. Ha et al., "Current progress on understanding the impact of mercury on human health," vol. 152, pp. 419-433, 2017. [42]J.-D. Park, W. J. J. o. p. m. Zheng, and p. health, "Human exposure and health effects of inorganic and elemental mercury," vol. 45, no. 6, p. 344, 2012. [43]N. Basu et al., "Our evolved understanding of the human health risks of mercury," vol. 52, no. 5, pp. 877-896, 2023. [44]F. Beckers, J. J. C. R. i. E. S. Rinklebe, and Technology, "Cycling of mercury in the environment: Sources, fate, and human health implications: A review," vol. 47, no. 9, pp. 693-794, 2017. [45]K.-H. Kim, E. Kabir, and S. A. J. J. o. h. m. Jahan, "A review on the distribution of Hg in the environment and its human health impacts," vol. 306, pp. 376-385, 2016. [46]B. Fernandes Azevedo et al., "Toxic effects of mercury on the cardiovascular and central nervous systems," vol. 2012, 2012. [47]G. Bjørklund et al., "Neurotoxic effects of mercury exposure in dental personnel," vol. 124, no. 5, pp. 568-574, 2019. [48]J. Contrino, P. Marucha, R. Ribaudo, R. Ference, P. Bigazzi, and D. J. T. A. j. o. p. Kreutzer, "Effects of mercury on human polymorphonuclear leukocyte function in vitro," vol. 132, no. 1, p. 110, 1988. [49]S. W. Tan, J. C. Meiller, and K. R. J. C. r. i. t. Mahaffey, "The endocrine effects of mercury in humans and wildlife," vol. 39, no. 3, pp. 228-269, 2009. [50]A. Bhan and N. J. R. o. e. h. Sarkar, "Mercury in the environment: effect on health and reproduction," vol. 20, no. 1, pp. 39-56, 2005. [51]M. C. Henriques, S. Loureiro, M. Fardilha, and M. T. J. R. t. Herdeiro, "Exposure to mercury and human reproductive health: A systematic review," vol. 85, pp. 93-103, 2019. [52]T. W. J. E. h. p. Clarkson, "Mercury: major issues in environmental health," vol. 100, pp. 31-38, 1993. [53]R. A. J. C. p. Anderson and biochemistry, "Chromium metabolism and its role in disease processes in man," vol. 4, no. 1, pp. 31-41, 1986. [54]R. A. J. J. o. t. A. C. o. N. Anderson, "Chromium, glucose intolerance and diabetes," vol. 17, no. 6, pp. 548-555, 1998. [55]B.-J. Martin et al., "Cardiac rehabilitation attendance and outcomes in coronary artery disease patients," vol. 126, no. 6, pp. 677-687, 2012. [56]V. R. Jammula, H. Leeper, M. R. Gilbert, D. Cooper, T. S. J. C. Armstrong, and B. Neurology, "Effects of cognitive reserve on cognition in individuals with central nervous system disease," vol. 34, no. 4, p. 245, 2021. [57]R. R. J. I. t. Ray, "Adverse hematological effects of hexavalent chromium: an overview," vol. 9, no. 2, p. 55, 2016. [58]S. Khijwania, B. J. O. Gupta, and Q. Electronics, "Fiber optic evanescent field absorption sensor: effect of fiber parameters and geometry of the probe," vol. 31, pp. 625-636, 1999. [59]P. Wang, Y. Semenova, Q. Wu, G. J. O. Farrell, and L. Technology, "A fiber-optic voltage sensor based on macrobending structure," vol. 43, no. 5, pp. 922-925, 2011. [60]Y. Qian, B. Sun, H. Wan, and Z. J. A. O. Zhang, "Novel temperature-independent microfiber sensor fabricated with the tapering-twisting-tapering technique," vol. 58, no. 12, pp. 3091-3096, 2019. [61]A. d. S. Arcas, F. d. S. Dutra, R. C. Allil, and M. M. J. S. Werneck, "Surface plasmon resonance and bending loss-based U-shaped plastic optical fiber biosensors," vol. 18, no. 2, p. 648, 2018. [62]C.-H. Hou, C.-C. Chiang, T.-S. Hsieh, Y.-L. Li, L. Tsai, and C.-Y. J. O. Hsu, "Double-knotted U-shaped spiral optical fiber probe for measuring glucose solutions," vol. 207, p. 163765, 2020. [63]G. Ramesh and T. Radhakrishnan, "A universal sensor for mercury (Hg, HgI, HgII) based on silver nanoparticle-embedded polymer thin film," ACS applied materials & interfaces, vol. 3, no. 4, pp. 988-994, 2011. [64]J. Zhao et al., "Surface plasmon resonance refractive sensor based on silver-coated side-polished fiber," vol. 230, pp. 206-211, 2016. [65]P. Shukla, P. Singhal, S. Manivannan, D. J. E. N. Mandal, Monitoring, and Management, "Silver Impregnated Novel Adsorbents for Capture of Elemental Mercury: A Review," p. 100825, 2023. [66]G. Ramesh, T. J. A. a. m. Radhakrishnan, and interfaces, "A universal sensor for mercury (Hg, HgI, HgII) based on silver nanoparticle-embedded polymer thin film," vol. 3, no. 4, pp. 988-994, 2011. [67]S. Han et al., "Practical, highly sensitive, and regenerable evanescent-wave biosensor for detection of Hg2+ and Pb2+ in water," vol. 80, pp. 265-272, 2016. [68]Y.-n. Zhang et al., "Reflective mercury ion and temperature sensor based on a functionalized no-core fiber combined with a fiber Bragg grating," vol. 272, pp. 331-339, 2018. [69]M. E. Martínez-Hernández, J. Goicoechea, and F. J. J. S. Arregui, "Hg2+ optical fiber sensor based on LSPR generated by gold nanoparticles embedded in LBL nano-assembled coatings," vol. 19, no. 22, p. 4906, 2019. [70]V. Prakashan et al., "Investigations on SPR induced Cu@ Ag core shell doped SiO2-TiO2-ZrO2 fiber optic sensor for mercury detection," vol. 507, p. 144957, 2020. [71]W. Wang and Y. J. C. Ku, "The light transmission and distribution in an optical fiber coated with TiO2 particles," vol. 50, no. 8, pp. 999-1006, 2003. [72]W. Yan, Q. Chen, X. Meng, and B. J. S. C. M. Wang, "Multicycle photocatalytic reduction of Cr (VI) over transparent PVA/TiO2 nanocomposite films under visible light," vol. 5, no. 60, pp. 449-460, 2017. [73]M. Liu et al., "A novel synthesis of porous TiO2 nanotubes and sequential application to dye contaminant removal and Cr (VI) visible light catalytic reduction," vol. 8, no. 5, p. 104061, 2020. [74]R. C. Kamikawachi, G. Possetti, M. Muller, H. J. Kalinowski, and J. L. Fabris, "Cr (III) and Cr (VI) detection in water environment using an optical fiber grating sensor," in 5th Iberoamerican Meeting on Optics and 8th Latin American Meeting on Optics, Lasers, and Their Applications, 2004, vol. 5622: SPIE, pp. 935-938. [75]T.-W. Sung, Y.-L. Lo, I.-L. J. S. Chang, and A. B. Chemical, "Highly sensitive and selective fluorescence probe for Cr3+ ion detection using water-soluble CdSe QDs," vol. 202, pp. 1349-1356, 2014. [76]W. Feng, C. Yuan, T. Li, and X. J. O. Yang, "Ion-imprinted-polymer coated fiber-optic SPR sensor for detection of trace Cr3+ in water," vol. 272, p. 170259, 2023. [77]R. S. Moakhar, G. K. L. Goh, A. Dolati, and M. J. E. C. Ghorbani, "A novel screen-printed TiO2 photoelectrochemical sensor for direct determination and reduction of hexavalent chromium," vol. 61, pp. 110-113, 2015. [78]B. Pratima et al., "Carcinogenic Chromium (VI) Sensing Using Transducing Characteristics of Fiber Bragg Grating and Physical Swelling of Hydrogel," vol. 23, no. 1, p. 27, 2022. [79]S. Menon, S. P. Usha, H. Manoharan, P. V. N. Kishore, and V. J. A. s. Sai, "Metal–organic framework-based fiber optic sensor for chromium (VI) detection," vol. 8, no. 2, pp. 684-693, 2023. [80]B. Li et al., "An ultraviolet sensor based on surface plasmon resonance in no-core optical fiber deposited by Ag and ZnO film," Surfaces and Interfaces, vol. 31, p. 102074, 2022. [81]H. Wu et al., "ZnO microwire-based fiber-tip Fabry-Pérot interferometer for deep ultraviolet sensing," Journal of Lightwave Technology, vol. 39, no. 12, pp. 4225-4229, 2021. [82]T. L. Singal, Optical fiber communications: principles and applications. Cambridge University Press, 2017. [83]Z. Fang, K. Chin, R. Qu, and H. Cai, Fundamentals of optical fiber sensors. John Wiley & Sons, 2012. [84]E. J. J. Snitzer, "Cylindrical dielectric waveguide modes," vol. 51, no. 5, pp. 491-498, 1961. [85]D. J. A. o. Gloge, "Weakly guiding fibers," vol. 10, no. 10, pp. 2252-2258, 1971. [86]R. Gafsi and M. A. J. O. f. t. El-Sherif, "Analysis of induced-birefringence effects on fiber Bragg gratings," vol. 6, no. 3, pp. 299-323, 2000. [87]J. F. Nye, Physical properties of crystals: their representation by tensors and matrices. Oxford university press, 1985. [88]S. P. Clark, Handbook of physical constants. Geological society of America, 1966. [89]H. J. J. o. L. t. Renner, "Bending losses of coated single-mode fibers: a simple approach," vol. 10, no. 5, pp. 544-551, 1992. [90]R. T. Schermer and J. H. J. I. j. o. q. e. Cole, "Improved bend loss formula verified for optical fiber by simulation and experiment," vol. 43, no. 10, pp. 899-909, 2007. [91]C. J. O. W. S. Vassallo and Technology, "Optical waveguide concepts," vol. 1, p. Sec. 5.2, 1991. [92]G. Liang, Z. Luo, K. Liu, Y. Wang, J. Dai, and Y. J. C. r. i. a. c. Duan, "Fiber optic surface plasmon resonance–based biosensor technique: fabrication, advancement, and application," vol. 46, no. 3, pp. 213-223, 2016. [93]X. J. J. o. b. Guo, "Surface plasmon resonance based biosensor technique: a review," vol. 5, no. 7, pp. 483-501, 2012. [94]B. D. Gupta, R. J. O. Kant, and L. Technology, "Recent advances in surface plasmon resonance based fiber optic chemical and biosensors utilizing bulk and nanostructures," vol. 101, pp. 144-161, 2018. [95]B. D. Gupta, A. M. Shrivastav, and S. P. J. S. Usha, "Surface plasmon resonance-based fiber optic sensors utilizing molecular imprinting," vol. 16, no. 9, p. 1381, 2016. [96]Y. Zhao, R.-j. Tong, F. Xia, Y. J. B. Peng, and Bioelectronics, "Current status of optical fiber biosensor based on surface plasmon resonance," vol. 142, p. 111505, 2019. [97]E. Kretschmann and H. J. Z. f. N. A. Raether, "Radiative decay of non radiative surface plasmons excited by light," vol. 23, no. 12, pp. 2135-2136, 1968. [98]H. J. S. p. o. s. Raether, r. surfaces, and o. gratings, "Surface plasmons on gratings," pp. 91-116, 2006. [99]S. A. Maier, Plasmonics: fundamentals and applications. Springer, 2007. [100]J. S. Fakonas, A. Mitskovets, and H. A. J. N. J. o. P. Atwater, "Path entanglement of surface plasmons," vol. 17, no. 2, p. 023002, 2015. [101]A. K. Mishra, S. K. Mishra, and R. K. J. T. J. o. P. C. C. Verma, "Graphene and beyond graphene MoS2: a new window in surface-plasmon-resonance-based fiber optic sensing," vol. 120, no. 5, pp. 2893-2900, 2016. [102]J. J. A. Homola and b. chemistry, "Present and future of surface plasmon resonance biosensors," vol. 377, pp. 528-539, 2003. [103]B. Liedberg, C. Nylander, I. J. S. Lunström, and actuators, "Surface plasmon resonance for gas detection and biosensing," vol. 4, pp. 299-304, 1983. [104]A. K. Sharma, R. Jha, and B. J. I. S. j. Gupta, "Fiber-optic sensors based on surface plasmon resonance: a comprehensive review," vol. 7, no. 8, pp. 1118-1129, 2007. [105]R. Verma and B. J. J. o. P. D. A. P. Gupta, "Theoretical modelling of a bi-dimensional U-shaped surface plasmon resonance based fibre optic sensor for sensitivity enhancement," vol. 41, no. 9, p. 095106, 2008. [106]M. A. Ordal et al., "Optical properties of the metals al, co, cu, au, fe, pb, ni, pd, pt, ag, ti, and w in the infrared and far infrared," vol. 22, no. 7, pp. 1099-1119, 1983. [107]M. D. Degrandpre and L. W. J. A. S. Burgess, "A fiber-optic FT-NIR evanescent field absorbance sensor," vol. 44, no. 2, pp. 273-279, 1990. [108]Z. Q. Tou, C. C. Chan, W. C. Wong, and L. H. J. I. P. T. L. Chen, "Fiber optic refractometer based on cladding excitation of localized surface plasmon resonance," vol. 25, no. 6, pp. 556-559, 2013. [109]J.-P. Conzen, J. Bürck, and H.-J. J. A. s. Ache, "Characterization of a fiber-optic evanescent wave absorbance sensor for nonpolar organic compounds," vol. 47, no. 6, pp. 753-763, 1993. [110]E. J. P. O. Simsek, "Effective refractive index approximation and surface plasmon resonance modes of metal nanoparticle chains and arrays," vol. 5, no. 7, pp. 629-632, 2009. [111]A. Prabhakar, S. J. S. Mukherji, and A. B. Chemical, "Investigation of the effect of curvature on sensitivity of bio/chemical sensors based on embedded polymer semicircular waveguides," vol. 171, pp. 1303-1311, 2012. [112]L. R. Oliveira, A. C. A. Silva, N. O. Dantas, E. P. J. I. J. o. H. Bandarra Filho, and M. Transfer, "Thermophysical properties of TiO2-PVA/water nanofluids," vol. 115, pp. 795-808, 2017. [113]M. Mitsushio, Y. Abe, and M. J. A. S. Higo, "Sensor properties and surface characterization of silver-deposited SPR optical fibers," vol. 26, no. 9, pp. 949-955, 2010. [114]Y. Zhao, Z.-q. Deng, Q. J. S. Wang, and A. B. Chemical, "Fiber optic SPR sensor for liquid concentration measurement," vol. 192, pp. 229-233, 2014. [115]S. J. J. o. S. BANERJEE and E. Research, "SILVER (I), MERCURY (II), COMPLEXES OF," vol. 14, p. 9, 1970. [116]K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, "The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment," vol. 107, ed: ACS Publications, 2003, pp. 668-677. [117]L. Shao-You, T. Qun-Li, and F. J. A. S. S. Qing-Ge, "Synthesis of S/Cr doped mesoporous TiO2 with high-active visible light degradation property via solid state reaction route," vol. 257, no. 13, pp. 5544-5551, 2011. [118]N. Kaur, D. P. Singh, and A. Mahajan, "Plasmonic engineering of TiO2 photoanodes for dye-sensitized solar cells: a review," Journal of Electronic Materials, vol. 51, no. 8, pp. 4188-4206, 2022.
|