|
[1] Z. Al-Hamamre, S. Foerster, F. Hartmann, M. Kröger, M. Kaltschmitt, Oil extracted from spent coffee grounds as a renewable source for fatty acid methyl ester manufacturing, Fuel 96 (2012) 70-76. [2] M.M. de Melo, H.M. Barbosa, C.P. Passos, C.M. Silva, Supercritical fluid extraction of spent coffee grounds: measurement of extraction curves, oil characterization and economic analysis, The Journal of Supercritical Fluids 86 (2014) 150-159. [3] D. Yordanov, Z. Mustafa, R. Milina, Z. Tsonev, Multi-criteria optimisation process of the oil extraction from spent coffee ground by various solvents, Oxidation Communications 39(2) (2016) 1478-1487. [4] L.F. Ballesteros, J.A. Teixeira, S.I. Mussatto, Chemical, functional, and structural properties of spent coffee grounds and coffee silverskin, Food and bioprocess technology 7(12) (2014) 3493-3503. [5] S.I. Mussatto, E.M. Machado, S. Martins, J.A. Teixeira, Production, composition, and application of coffee and its industrial residues, Food and Bioprocess Technology 4(5) (2011) 661. [6] S.I. Mussatto, L.M. Carneiro, J.P. Silva, I.C. Roberto, J.A. Teixeira, A study on chemical constituents and sugars extraction from spent coffee grounds, Carbohydrate polymers 83(2) (2011) 368-374. [7] J.H. Low, W.A.W.A. Rahman, J. Jamaluddin, The influence of extraction parameters on spent coffee grounds as a renewable tannin resource, Journal of Cleaner Production 101 (2015) 222-228. [8] A.G. Bradbury, D.J. Halliday, Chemical structures of green coffee bean polysaccharides, Journal of Agricultural and Food Chemistry 38(2) (1990) 389-392. [9] M. Arya, L.J.M. Rao, An impression of coffee carbohydrates, Critical reviews in food science and nutrition 47(1) (2007) 51-67. [10] H.-D. Belitz, W. Grosch, P. Schieberle, Coffee, tea, cocoa, Food chemistry (2009) 938-970. [11] P. Delgado, J. Vignoli, M. Siika-aho, T. Franco, Sediments in coffee extracts: Composition and control by enzymatic hydrolysis, Food chemistry 110(1) (2008) 168-176. [12] R. Ravindranath, R.Y.A. Khan, T. Obi Reddy, S. Thirumala Rao, B. Reddy, Composition and characteristics of Indian coffee bean, spent grounds and oil, Journal of the Science of Food and Agriculture 23(3) (1972) 307-310. [13] J. Bravo, I. Juaniz, C. Monente, B. Caemmerer, L.W. Kroh, M.P. De Peña, C. Cid, Evaluation of spent coffee obtained from the most common coffeemakers as a source of hydrophilic bioactive compounds, Journal of agricultural and food chemistry 60(51) (2012) 12565-12573. [14] F. Calixto, J. Fernandes, R. Couto, E.J. Hernández, V. Najdanovic-Visak, P.C. Simões, Synthesis of fatty acid methyl esters via direct transesterification with methanol/carbon dioxide mixtures from spent coffee grounds feedstock, Green Chemistry 13(5) (2011) 1196-1202. [15] R.M. Couto, J. Fernandes, M.G. Da Silva, P.C. Simoes, Supercritical fluid extraction of lipids from spent coffee grounds, The journal of Supercritical fluids 51(2) (2009) 159-166. [16] N. Kondamudi, S.K. Mohapatra, M. Misra, Spent coffee grounds as a versatile source of green energy, Journal of agricultural and food chemistry 56(24) (2008) 11757-11760. [17] N. Balasundram, K. Sundram, S. Samman, Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses, Food chemistry 99(1) (2006) 191-203. [18] A. De Souza, S. Yucel, R. Konijeti, S.P. Elliott, L.S. Baskin, 195: Genital Anomalies with Maternal Exposure to Progesterone in Mice, The Journal of Urology 171(4S) (2004) 51-52. [19] P.S. Murthy, M.M. Naidu, Recovery of phenolic antioxidants and functional compounds from coffee industry by-products, Food and Bioprocess Technology 5(3) (2012) 897-903. [20] P. Esquivel, V.M. Jiménez, Functional properties of coffee and coffee by-products, Food Research International 46(2) (2012) 488-495. [21] J. McNutt, Spent coffee grounds: A review on current utilization, Journal of industrial and engineering chemistry 71 (2019) 78-88. [22] E.E. Kwon, H. Yi, Y.J. Jeon, Sequential co-production of biodiesel and bioethanol with spent coffee grounds, Bioresource technology 136 (2013) 475-480. [23] N.S. Caetano, V.F. Silva, A.C. Melo, A.A. Martins, T.M. Mata, Spent coffee grounds for biodiesel production and other applications, Clean Technologies and Environmental Policy 16(7) (2014) 1423-1430. [24] E. Sendzikiene, V. Makareviciene, P. Janulis, S. Kitrys, Kinetics of free fatty acids esterification with methanol in the production of biodiesel fuel, European journal of lipid science and technology 106(12) (2004) 831-836. [25] A.A. Chavan, J. Pinto, I. Liakos, I.S. Bayer, S. Lauciello, A. Athanassiou, D. Fragouli, Spent coffee bioelastomeric composite foams for the removal of Pb2+ and Hg2+ from water, ACS Sustainable Chemistry & Engineering 4(10) (2016) 5495-5502. [26] Y. Dai, K. Zhang, X. Meng, J. Li, X. Guan, Q. Sun, Y. Sun, W. Wang, M. Lin, M. Liu, New use for spent coffee ground as an adsorbent for tetracycline removal in water, Chemosphere 215 (2019) 163-172. [27] E. Koh, K.H. Hong, Preparation and properties of cotton fabrics finished with spent coffee extract, Cellulose 24(11) (2017) 5225-5232. [28] L. Panzella, P. Cerruti, V. Ambrogi, S. Agustin-Salazar, G. D’Errico, C. Carfagna, L. Goya, S. Ramos, M.A. Martín, A. Napolitano, A superior all-natural antioxidant biomaterial from spent coffee grounds for polymer stabilization, cell protection, and food lipid preservation, ACS Sustainable Chemistry & Engineering 4(3) (2016) 1169-1179. [29] M. Sprynskyy, B. Buszewski, A.P. Terzyk, J. Namieśnik, Study of the selection mechanism of heavy metal (Pb2+, Cu2+, Ni2+, and Cd2+) adsorption on clinoptilolite, Journal of colloid and interface science 304(1) (2006) 21-28. [30] F. Pagnanelli, A. Esposito, F. Vegliò, Multi-metallic modelling for biosorption of binary systems, Water research 36(16) (2002) 4095-4105. [31] N.E. Davila-Guzman, F.d.J. Cerino-Córdova, M. Loredo-Cancino, J.R. Rangel-Mendez, R. Gómez-González, E. Soto-Regalado, Studies of adsorption of heavy metals onto spent coffee ground: equilibrium, regeneration, and dynamic performance in a fixed-bed column, International Journal of Chemical Engineering 2016 (2016). [32] N. Hussain, S. Chantrapromma, T. Suwunwong, K. Phoungthong, Cadmium (II) removal from aqueous solution using magnetic spent coffee ground biochar: Kinetics, isotherm and thermodynamic adsorption, Materials Research Express 7(8) (2020) 085503. [33] J. Chwastowski, D. Bradło, W. Żukowski, Adsorption of Cadmium, Manganese and Lead Ions from Aqueous Solutions Using Spent Coffee Grounds and Biochar Produced by Its Pyrolysis in the Fluidized Bed Reactor, Materials 13(12) (2020) 2782. [34] K. Passadis, V. Fragoulis, V. Stoumpou, J. Novakovic, E.M. Barampouti, S. Mai, K. Moustakas, D. Malamis, M. Loizidou, Study of Valorisation Routes of Spent Coffee Grounds, WASTE AND BIOMASS VALORIZATION (2020). [35] R. Muangrat, I. Pongsirikul, Recovery of spent coffee grounds oil using supercritical CO2: Extraction optimisation and physicochemical properties of oil, CyTA-Journal of Food 17(1) (2019) 334-346. [36] I. Efthymiopoulos, P. Hellier, N. Ladommatos, A. Russo-Profili, A. Eveleigh, A. Aliev, A. Kay, B. Mills-Lamptey, Influence of solvent selection and extraction temperature on yield and composition of lipids extracted from spent coffee grounds, Industrial Crops and Products 119 (2018) 49-56. [37] J.W. Alexander, History of the medical use of silver, Surgical infections 10(3) (2009) 289-292. [38] A.B. Lansdown, Silver in healthcare: its antimicrobial efficacy and safety in use, Royal Society of Chemistry2010. [39] B. Nowack, H.F. Krug, M. Height, 120 years of nanosilver history: implications for policy makers, ACS Publications, 2011. [40] T.V. Duncan, Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors, Journal of colloid and interface science 363(1) (2011) 1-24. [41] S.W. Wijnhoven, W.J. Peijnenburg, C.A. Herberts, W.I. Hagens, A.G. Oomen, E.H. Heugens, B. Roszek, J. Bisschops, I. Gosens, D. Van De Meent, Nano-silver–a review of available data and knowledge gaps in human and environmental risk assessment, Nanotoxicology 3(2) (2009) 109-138. [42] D.W. Brett, A discussion of silver as an antimicrobial agent: alleviating the confusion, Ostomy/wound management 52(1) (2006) 34-41. [43] J.W. Wiechers, N. Musee, Engineered inorganic nanoparticles and cosmetics: facts, issues, knowledge gaps and challenges, Journal of biomedical nanotechnology 6(5) (2010) 408-431. [44] K. Vasilev, J. Cook, H.J. Griesser, Antibacterial surfaces for biomedical devices, Expert review of medical devices 6(5) (2009) 553-567. [45] L. Wang, T. Zhang, P. Li, W. Huang, J. Tang, P. Wang, J. Liu, Q. Yuan, R. Bai, B. Li, Use of synchrotron radiation-analytical techniques to reveal chemical origin of silver-nanoparticle cytotoxicity, ACS nano 9(6) (2015) 6532-6547. [46] A. Desireddy, B.E. Conn, J. Guo, B. Yoon, R.N. Barnett, B.M. Monahan, K. Kirschbaum, W.P. Griffith, R.L. Whetten, U. Landman, Ultrastable silver nanoparticles, Nature 501(7467) (2013) 399-402. [47] K.M. Abou El-Nour, A.a. Eftaiha, A. Al-Warthan, R.A. Ammar, Synthesis and applications of silver nanoparticles, Arabian journal of chemistry 3(3) (2010) 135-140. [48] F.J. Heiligtag, M. Niederberger, The fascinating world of nanoparticle research, Materials Today 16(7-8) (2013) 262-271. [49] V.K. Sharma, R.A. Yngard, Y. Lin, Silver nanoparticles: green synthesis and their antimicrobial activities, Advances in colloid and interface science 145(1-2) (2009) 83-96. [50] H. Duan, D. Wang, Y. Li, Green chemistry for nanoparticle synthesis, Chemical Society Reviews 44(16) (2015) 5778-5792. [51] T.A.J. de Souza, L.R.R. Souza, L.P. Franchi, Silver nanoparticles: An integrated view of green synthesis methods, transformation in the environment, and toxicity, Ecotoxicology and environmental safety 171 (2019) 691-700. [52] P. Singh, Y.-J. Kim, D. Zhang, D.-C. Yang, Biological synthesis of nanoparticles from plants and microorganisms, Trends in biotechnology 34(7) (2016) 588-599. [53] Y.-H. Chen, C.-S. Yeh, Laser ablation method: use of surfactants to form the dispersed Ag nanoparticles, Colloids and Surfaces A: Physicochemical and Engineering Aspects 197(1-3) (2002) 133-139. [54] H. Chugh, D. Sood, I. Chandra, V. Tomar, G. Dhawan, R. Chandra, Role of gold and silver nanoparticles in cancer nano-medicine, Artificial cells, nanomedicine, and biotechnology 46(sup1) (2018) 1210-1220. [55] S.H. Lee, B.-H. Jun, Silver nanoparticles: synthesis and application for nanomedicine, International journal of molecular sciences 20(4) (2019) 865. [56] C. Kinnear, T.L. Moore, L. Rodriguez-Lorenzo, B. Rothen-Rutishauser, A. Petri-Fink, Form follows function: nanoparticle shape and its implications for nanomedicine, Chemical reviews 117(17) (2017) 11476-11521. [57] K. Mallick, M. Witcomb, M. Scurrell, Polymer stabilized silver nanoparticles: a photochemical synthesis route, Journal of Materials Science 39(14) (2004) 4459-4463. [58] M.A. Malik, P. O'Brien, N. Revaprasadu, A simple route to the synthesis of core/shell nanoparticles of chalcogenides, Chemistry of Materials 14(5) (2002) 2004-2010. [59] L. Sintubin, W. Verstraete, N. Boon, Biologically produced nanosilver: current state and future perspectives, Biotechnology and Bioengineering 109(10) (2012) 2422-2436. [60] C. Haefeli, C. Franklin, K.E. Hardy, Plasmid-determined silver resistance in Pseudomonas stutzeri isolated from a silver mine, Journal of bacteriology 158(1) (1984) 389-392. [61] R. Vaidyanathan, S. Gopalram, K. Kalishwaralal, V. Deepak, S.R.K. Pandian, S. Gurunathan, Enhanced silver nanoparticle synthesis by optimization of nitrate reductase activity, Colloids and surfaces B: Biointerfaces 75(1) (2010) 335-341. [62] S.A. Kumar, M.K. Abyaneh, S. Gosavi, S.K. Kulkarni, R. Pasricha, A. Ahmad, M. Khan, Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3, Biotechnology letters 29(3) (2007) 439-445. [63] P. Mohanpuria, N.K. Rana, S.K. Yadav, Biosynthesis of nanoparticles: technological concepts and future applications, Journal of nanoparticle research 10(3) (2008) 507-517. [64] P. Mukherjee, A. Ahmad, D. Mandal, S. Senapati, S.R. Sainkar, M.I. Khan, R. Parishcha, P. Ajaykumar, M. Alam, R. Kumar, Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis, Nano letters 1(10) (2001) 515-519. [65] A.K. Jha, K. Prasad, K. Prasad, A. Kulkarni, Plant system: nature's nanofactory, Colloids and Surfaces B: Biointerfaces 73(2) (2009) 219-223. [66] N Budisa, T Schneider, Expanding the DOPA Universe with Genetically Encoded, Mussel‐Inspired Bioadhesives for Material Sciences and Medicin, ChemBioChem 20(17) (2019) 2163-2190 [67] S. Iravani, B. Zolfaghari, %J BioMed research international, Green synthesis of silver nanoparticles using Pinus eldarica bark extract, Biotechnology and Green Chemistry (2013) [68] R. Veerasamy, T.Z. Xin, S. Gunasagaran, T. F. W. Xiang, E. F. C. Yang, N. Jeyakumar, S. A. Dhanaraj, %J Journal of saudi chemical society, Biosynthesis of silver nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activities, Journal of Saudi Chemical Society, (2011) 113-120 [69] J.K. Pandey, R. Swarnkar, K. Soumya, P. Dwivedi, M.K. Singh, S. Sundaram, R. Gopal, Silver nanoparticles synthesized by pulsed laser ablation: as a potent antibacterial agent for human enteropathogenic gram-positive and gram-negative bacterial strains, Applied biochemistry and biotechnology 174(3) (2014) 1021-1031. [70] J.S. Kim, E. Kuk, K.N. Yu, J.-H. Kim, S.J. Park, H.J. Lee, S.H. Kim, Y.K. Park, Y.H. Park, C.-Y. Hwang, Antimicrobial effects of silver nanoparticles, Nanomedicine: Nanotechnology, Biology and Medicine 3(1) (2007) 95-101. [71] M.P. Patil, G.-D. Kim, Eco-friendly approach for nanoparticles synthesis and mechanism behind antibacterial activity of silver and anticancer activity of gold nanoparticles, Applied microbiology and biotechnology 101(1) (2017) 79-92. [72] A. Ul-Hamid, A Beginners' Guide to Scanning Electron Microscopy, Springer Nature (2018) 1-14 [73] A. Dutta, Fourier transform infrared spectroscopy. Spectroscopic methods for nanomaterials characterization, Micro and Nano Technologies (2017) 73-93 [74] C. De Blasio, Thermogravimetric Analysis (TGA), Fundamentals of Biofuels Engineering and Technology (2019) 91-102 [75] M.S. Islam, N. Akter, M.M. Rahman, C. Shi, M.T. Islam, H. Zheng, M.S. Azam, Musselinspired immobilization of silver nanoparticles toward antimicrobial cellulose paper, ACS Sustain. Chem. Eng. 6 (2018) 9178–9188 [76] L.F. Ballesteros, M.A. Cerqueira, J.A. Teixeira, S.I. Mussatto, Characterization of polysaccharides extracted from spent coffee grounds by alkali pretreatment, Carbohydr. Polym. 127 (2015) 347–354 [77] C. Han, L. Ge, C. Chen, Y. Li, Z. Zhao, X. Xiao, Z. Li, J. Zhang, Site-selected synthesis of novel Ag@AgCl nanoframes with efficient visible light induced photocatalytic activity, J. Mater. Chem. A 2 (2014) 12594–12600 [78] Z. Yan, G. Compagnini, D.B. Chrisey, Generation of AgCl cubes by excimer laser ablation of bulk Ag in aqueous NaCl solutions, J. Phys. Chem. 115 (2011) 5058–5062 [79] A. Zuorro, R. Lavecchia, Spent coffee grounds as a valuable source of phenolic compounds and bioenergy, J. Clean. Prod. 34 (2012) 49–56 [80] S.I. Mussatto, L.F. Ballesteros, S. Martins, J.A. Teixeira, Extraction of antioxidant phenolic compounds from spent coffee grounds, Sep. Purif. Technol. 83 (2011) 173–179 [81] S. Iravani, Green synthesis of metal nanoparticles using plants, Green Chem. 13 (2011) 2638–2650 [82] A.K. Mittal, Y. Chisti, U.C. Banerjee, Synthesis of metallic nanoparticles using plant extracts, Biotechnol. Adv. 31 (2013) 346–356 [83] H. Veisi, M. Farokha, M. Hamelian, S. Hemmati, Green synthesis of Au nanoparticles using an aqueous extract of Stachys lavandulifolia and their catalytic performance for alkyne/aldehyde/amine A3 coupling reactions, RSC Adv. 8 (2018) 38186–38195 [84] S. Jain, M.S. Mehata, Medicinal plant leaf extract and pure flavonoid mediated green synthesis of silver nanoparticles and their enhanced antibacterial property, Sci. Rep. 7 (2017), 15867 [85] M. Sathishkumar, K. Sneha, S.W. Won, C.W. Cho, S. Kin, Y.S. Yun, Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity, Colloids Surf. B: Biointerfaces 73 (2009) 332–338 [86] M. Daglia, M.T. Cuzzoni, C. Dacarro, Antibacterial activity of coffee, J. Agric. Food Chem. 42 (1994) 2270–2272 [87] A.A. Almeida, A. Farah, D.A. Silva, E.A. Nunan, M.B. Gloria, Antibacterial activity of coffee extracts and selected coffee chemical compounds against enterobacteria, J. Agric. Food Chem. 54 (2006) 8738–8743 [88] S. Tang, J. Zheng, Antibacterial activity of silver nanoparticles: structural effects, Adv. Healthc. Mater. 7 (2018), e1701503 [89] Y.N. Slavin, J. Asnis, U.O. Hafeli, H. Bach, Metal nanoparticles: understanding the mechanisms behind antibacterial activity, J. Nanobiotechnol. 15 (2017), 65 [90] T.J. Beveridge, Structures of gram-negative cell walls and their derived membrane vesicles, J. Bacteriol. 181 (1999) 4725–4733
|