|
Becker, A. (2015). Challenges and perspectives in combinatorial assembly of novel exopolysaccharide biosynthesis pathways. Frontiers in Microbiology, 6, 687. Boels, I. C., Ramos, A., Kleerebezem, M., & de Vos, W. M. (2001). Functional analysis of the Lactococcus lactis galU and galE genes and their impact on sugar nucleotide and exopolysaccharide biosynthesis. Applied and Environmental Microbiology, 67(7), 3033-3040. Chen, J., Lee, S. M., & Mao, Y. (2004). Protective effect of exopolysaccharide colanic acid of Escherichia coli O157: H7 to osmotic and oxidative stress. International Journal of Food Microbiology, 93(3), 281-286. Choi, J., & Lee, S. Y. (1999). Factors affecting the economics of polyhydroxyalkanoate production by bacterial fermentation. Applied Microbiology and Biotechnology, 51(1), 13-21. Chowdhury, A. A. (1963). Poly-β-hydroxybuttersäure abbauende Bakterien und Exoenzym. Archiv für Mikrobiologie, 47(2), 167-200. Ciesielski, S., Możejko, J., & Pisutpaisal, N. (2015). Plant oils as promising substrates for polyhydroxyalkanoates production. Journal of Cleaner Production, 106, 408-421. Doi, Y. (1995, July). Microbial synthesis, physical properties, and biodegradability of polyhydroxyalkanoates.in Macromolecular Symposia (Vol. 98, No. 1, pp. 585-599). Basel: Hüthig & Wepf Verlag. Furlong, S. E., Ford, A., Albarnez-Rodriguez, L., & Valvano, M. A. (2015). Topological analysis of the Escherichia coli WcaJ protein reveals a new conserved configuration for the polyisoprenyl-phosphate hexose-1-phosphate transferase family. Scientific Reports, 5, 9178. Hussain, A., Zia, K. M., Tabasum, S., Noreen, A., Ali, M., Iqbal, R., & Zuber, M. (2017). Blends and composites of exopolysaccharides; properties and applications: A review. International Journal of Biological Macromolecules, 94, 10-27. Jacquel, N., Lo, C. W., Wei, Y. H., Wu, H. S., & Wang, S. S. (2008). Isolation and purification of bacterial poly (3-hydroxyalkanoates). Biochemical Engineering Journal, 39(1), 15-27. Kassab, A. C., Xu, K., Denkbas, E. B., Dou, Y., Zhao, S., & Piskin, E. (1997). Rifampicin carrying polyhydroxybutyrate microspheres as a potential chemoembolization agent. Journal of Biomaterials Science, Polymer Edition, 8(12), 947-961. Khanna, S., & Srivastava, A. K. (2009). On-line characterization of physiological state in poly (β-hydroxybutyrate) production by Wautersia eutropha. Applied Biochemistry and Biotechnology, 157(2), 237-243. Kim, Y. B., & Rhee, Y. H. (2000). Evaluation of various carbon substrates for the biosynthesis of polyhydroxyalkanoates bearing functional groups by Pseudomonas putida. International Journal of Biological Macromolecules, 28(1), 23-29. Kim, H. W., Chung, M. G., & Rhee, Y. H. (2007). Biosynthesis, modification, and biodegradation of bacterial medium-chain-length polyhydroxyalkanoates. The Journal of Microbiology, 45(2), 87-97. Kim, E. J., Son, H. F., Chang, J. H., & Kim, K. J. (2014). Cloning, expression, purification, crystallization and X-ray crystallographic analysis of β-ketothiolase B from Ralstonia eutropha H16. Acta Crystallographica Section F: Structural Biology Communications, 70(3), 316-319. Koller, M., Hesse, P., Bona, R., Kutschera, C., Atlić, A., & Braunegg, G. (2007, August). Biosynthesis of high quality polyhydroxyalkanoate co‐and terpolyesters for potential medical application by the archaeon Haloferax mediterranei. In Macromolecular Symposia (Vol. 253, No. 1, pp. 33-39). Weinheim: WILEY‐VCH Verlag. Kovach, M. E., Elzer, P. H., Hill, D. S., Robertson, G. T., Farris, M. A., Roop, R. M., & Peterson, K. M. (1995). Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene, 166(1), 175-176. Kunasundari, B., & Sudesh, K. (2011). Isolation and recovery of microbial polyhydroxyalkanoates. Express Polymer Letters, 5(7). Lemoigne, M. (1926). Produits de deshydration et de polymerisation de l'acide β- oxybutyrique. Bull. Soc. Chim. Biol., 8, 770-782. Lee, S. Y. (1996). Bacterial polyhydroxyalkanoates. Biotechnology and Bioengineering, 49(1), 1-14. Le Van Mao, R., Zhao, Q., Dima, G., & Petraccone, D. (2011). New process for the acid-catalyzed conversion of cellulosic biomass (AC3B) into alkyl levulinates and other esters using a unique one-pot system of reaction and product extraction. Catalysis Letters, 141(2), 271-276. Lim, J., You, M., Li, J., & Li, Z. (2017). Emerging bone tissue engineering via Polyhydroxyalkanoate (PHA)-based scaffolds. Materials Science and Engineering: C, 79, 917-929. Morone, A., Apte, M., & Pandey, R. A. (2015). Levulinic acid production from renewable waste resources: Bottlenecks, potential remedies, advancements and applications. Renewable and Sustainable Energy Reviews, 51, 548-565. Nwodo, U. U., Green, E., & Okoh, A. I. (2012). Bacterial exopolysaccharides: functionality and prospects. International Journal of Molecular Sciences, 13(11), 14002-14015. Ong, S. Y., Zainab-L, I., Pyary, S., & Sudesh, K. (2018). A novel biological recovery approach for PHA employing selective digestion of bacterial biomass in animals. Applied Microbiology and Biotechnology, 102(5), 2117-2127. Patel, M., Gapes, D. J., Newman, R. H., & Dare, P. H. (2009). Physico-chemical properties of polyhydroxyalkanoate produced by mixed-culture nitrogen-fixing bacteria. Applied Microbiology and Biotechnology, 82(3), 545-555. Phithakrotchanakoon, C., Champreda, V., Aiba, S. I., Pootanakit, K., & Tanapongpipat, S. (2013). Engineered Escherichia coli for short-chain-length medium-chain-length polyhydroxyalkanoate copolymer biosynthesis from glycerol and dodecanoate. Bioscience, Biotechnology, and Biochemistry, 77(6), 1262-1268. Rackemann, D. W., & Doherty, W. O. (2011). The conversion of lignocellulosics to levulinic acid. Biofuels, Bioproducts and Biorefining, 5(2), 198-214. Ranjit, D. K., & Young, K. D. (2016). Colanic acid intermediates prevent de novo shape recovery of Escherichia coli spheroplasts, calling into question biological roles previously attributed to colanic acid. Journal of Bacteriology, JB-01034. Reddy, C. S. K., Ghai, R., & Kalia, V. (2003). Polyhydroxyalkanoates: an overview. Bioresource Technology, 87(2), 137-146. Rochman, C. M., Browne, M. A., Halpern, B. S., Hentschel, B. T., Hoh, E., Karapanagioti, H. K., ... & Thompson, R. C. (2013). Policy: Classify plastic waste as hazardous. Nature, 494(7436), 169. Ricke, S. C. (2003). Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poultry Science, 82(4), 632-639 Sachdeva, S., Palur, R. V., Sudhakar, K. U., & Rathinavelan, T. (2017). E. coli group 1 capsular polysaccharide exportation nanomachinary as a plausible antivirulence target in the perspective of emerging antimicrobial resistance. Frontiers in Microbiology, 8, 70. Segur, J. B., & Oberstar, H. E. (1951). Viscosity of glycerol and its aqueous solutions. Industrial & Engineering Chemistry, 43(9), 2117-2120. Sheu, D. S., Chen, Y. L. L., Jhuang, W. J., Chen, H. Y., & Jane, W. N. (2018). Cultivation temperature modulated the monomer composition and polymer properties of polyhydroxyalkanoate synthesized by Cupriavidus sp. L7L from levulinate as sole carbon source. International Journal of Biological Macromolecules, 118, 1558-1564. Simon, R. U. P. A. P., Priefer, U., & Pühler, A. (1983). A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Nature Biotechnology, 1(9), 784. Stevenson, G., Andrianopoulos, K., Hobbs, M., & Reeves, P. R. (1996). Organization of the Escherichia coli K-12 gene cluster responsible for production of the extracellular polysaccharide colanic acid. Journal of Bacteriology, 178(16), 4885-4893. Sudesh, K., Abe, H., & Doi, Y. (2000). Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Progress in Polymer Science, 25(10), 1503-1555 Sutherland, I. W. (2001). Microbial polysaccharides from Gram-negative bacteria. International Dairy Journal, 11(9), 663-674. Weingarten, R., Conner, W. C., & Huber, G. W. (2012). Production of levulinic acid from cellulose by hydrothermal decomposition combined with aqueous phase dehydration with a solid acid catalyst. Energy & Environmental Science, 5(6), 7559-7574. Zhao, D., Cai, L., Wu, J., Li, M., Liu, H., Han, J., ... & Xiang, H. (2013). Improving polyhydroxyalkanoate production by knocking out the genes involved in exopolysaccharide biosynthesis in Haloferax mediterranei. Applied Microbiology and Biotechnology, 97(7), 3027-3036. Zinn, M., Witholt, B., & Egli, T. (2001). Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Advanced Drug Delivery Reviews, 53(1), 5-21. 莊雯鈞 (2016)。Cupriavidus sp. L7L以果糖酸為唯一碳源生合成poly(3-hydroxy butyrate-co-3-hydroxyvalerate-co-4-hydroxyvalerate) 三元共聚物的研究。國立高雄海洋科技大學海洋生物技術系暨研究所碩士論文,台灣高雄。
|