王惠蘭。(2013)。吳郭魚魚鱗膠原胜肽之鐵結合能力探討。國立高雄海洋科技大學水產食品科學研究所碩士論文。行政院農委會漁業署:漁業統計年報。(2021)。[https://www.fa.gov.tw/view.php?theme=FS_AR&subtheme=&id=20]。
行政院農業委員會漁業署。(2016)。縱橫魚蝦貝類網。[http://fisheasy.fa.gov.tw/index.aspx?id=18103&chk=C01AAE2A-B7AC-461D-AC23-4E831063D2DC¶m=]。
行政院農業委員會漁業署。(2021)。養殖漁業放養查詢平台。[https://fadopen.fa.gov.tw/fadopen/service/qrySpeciesSummaryYearlyReport.htmx]。
吳双智。(2008)。利用酵素法由魚鱗中製備膠原蛋白胜肽。國立高雄海洋科技大學水產食品科學研究所碩士論文。吳幸娟、章雅惠、張新儀、潘文涵。台灣地區成人攝入礦物質(鈣、磷、鐵、鈉)之食物來源─1993-1996。國民營養健康狀況變遷調查結果。中華營誌,26,142-158。
吳純衡、蔡慧君。(2006)。魚鱗膠原蛋白及其製備方法。中華民國專利-200613565。
李英漢。(2012)。魚鱗膠原蛋白胜肽之礦物質結合功能性探討。國立高雄海洋科技大學水產食品科學研究所碩士論文。周士高、楊琇惠、汪怡如、林家民。(2020)。鱸魚萃取物及副產品開發與其生物活性品質分析研究。臺灣農業化學與食品科學;58(1),18 - 26。
林嘉琦。(2006)。膠原蛋白吸附於高分子基材上微結構之探討。國立宜蘭大學生物技術研究所碩士論文。
洪雅萍。(2004)。膠原蛋白產品的功效。科學發展,380期。[https://ejournal.stpi.narl.org.tw/sd/download?source=9308/9308-05.pdf&vlId=144449BA-A5FB-48FA-A5B6-D7638DEE8F4A&nd=0&ds=0]
香港特別行政區政府衛生署學生健康服務。(2021)。礦物質。[https://www.studenthealth.gov.hk/tc_chi/health/health_dn/health_dn_rb.html]
香港醫院藥劑師學會。(2022)。了解礦物質。醫藥人。第 27 期。[https://www.3phk.com/v5article.asp?id=893]
唐宗豪。(2012)。芝麻蛋白水解物之抗氧化性探討。朝陽科技大學生化科技研究所學位論文。
張文重。(1976)。蛋白質分解酵素(構造、功能、進化及應用)。國立編譯館,台北。
教育部體育署。(2014)。礦物質。[https://www.sa.gov.tw/PageContent?n=1516]
陳又銓。(2018)。香水蓮花胎座及花梗多醣之萃取純化及特性。國立高雄大學生命科學系研究所碩士論文。陳世輝。(2004)。膠原蛋白讓你水噹噹。科學發展,380期。
陳姿吟。(2013)。吳郭魚魚鱗膠原胜肽的製備與鈣結合能力探討。國立高雄海洋科技大學水產食品科學研究所碩士論文。彭建彰、洪源宗。(2011)。胜肽營養對於病患腸道吸收效能之探討。當代醫學,458期,940-944。
曾馨誼、許瑞瑱、施坤河。(2022)。2020國內保健營養食品產值暨產業概況分析。中華穀類食品工業技術研究所。
陽鎮宇。(2011)。芽孢桿菌Bacillus subtilis B34 and Bacillus thuringiensis B163接種於菜籽粕與蓖麻粕粉對水溶性作物養分濃度影響之探討。朝陽科技大學應用化學系碩士論文。黃均蕙。(2017)。虱目魚鱗胜肽衍生物之生物功能性分析。臺灣大學漁業科學研究所學位論文。
劉宜洵。(2005)。大豆蛋白水解物中降膽固醇胜肽之研究。東海大學食品科學系碩士論文。蔡慧君、吳純衡。(2010)。可點石成金的水產資源。科學發展,448期。
蔡慧君、胡燕君。(2005)。魚鱗的完全利用。水試專訊,12期,第14 頁。
衛生福利部食品藥物管理署。(2017)。食品營養成分資料庫。[https://consumer.fda.gov.tw/Food/tfndDetail.aspx?nodeID=178&f=0&id=1013]。
衛生福利部國民健康署。(2020)。「國人膳食營養素參考攝取量」第八版-鈣。
衛生福利部國民健康署。(2020)。「國人膳食營養素參考攝取量」第八版-鐵。
賴志行、吳佩蒨、吳純衡、蕭泉源。(2007)。吳郭魚鱗膠原蛋白酵素水解液抗氧化活性之探討。水產研究,15(2),99-108。
謝慧淑。(2017)。鱸魚魚鱗水解物製備胜肽螯合鈣之研究。國立高雄海洋科技大學水產食品科學研究所碩士學位論文。行政院衛生福利部。(2013)。部授食字第1021950329號公告-食品微生物之檢驗方法-生菌數之檢驗。
Arnaud, C. D. & Sanchez, S. Z. (1990). The role of calcium inosteoporosis. Annu. Rev. Nutr, 10, 397-414.
Aït-oukhatar, N., Bouhallab, S., Bureau, F., Arhan, P., Maubois, J. L., Drosdowsky, M. A. & Bouglé, D. L. (1997). Bioavailability of caseinophosphopeptide bound iron in the young rat. The Journal of Nutritional Biochemistry, 8(4), 190-194.
Aspmo, S. I., Horn, S. J., Eijsink, H. & Vincent, G. (2005). Enzymatic hydrolysis of Atlantic cod (Gadus morhua L.) viscera. Process Biochemistry, 40(5), 1957-1966.
Azuma, K., Osaki, T., Tsuka, T., Imagawa, T., Okamoto, Y. & Minami, S. (2014). Effects of fish scale collagen peptide on an experimental ulcerative colitis mouse model. PharmaNutrition, 2(4), 161-168.
Bagi, C.M., Berryman, E.R., Teo, S. & Lane, N.E. (2017). Oral administration of undenatured native chicken type II collagen (UC-II) diminished deterioration of articular cartilage in a rat model of osteoarthritis (OA). Osteoarthritis and cartilage, 25(12), 2080-2090.
Bronner, F. & Pansu, D. (1999). Nutritional aspects of calcium absorption. Journal of Nutrition, 129(1), 9-12.
Byrd-Bredbenner, C., Meo, G., Beshgetoor. & Berning, J. (2008). Wardlaw’s Perspectives in Nutrition, 8e. McGraw Hill, 229.
Caetano-Silva, M. E., Bertoldo-Pacheco, M. T., Paes-Leme, A. F. & Netto, F. M. (2015). Iron-binding peptides from whey protein hydrolysates: Evaluation, isolation and sequencing by LC–MS/MS. Food Research International, 71, 132-139.
Carpenter, C. E. & Ward, R. E. (2017). Iron Determination by Ferrozine Method. Food Analysis Laboratory Manual, 157-159.
Chalamaiah, M., Dinesh kumar, B., Hemalatha, R. & Jyothirmayi,T. (2012). Fish protein hydrolysates: Proximate composition, amino acid composition, antioxidant activities and applications: A review. Food Chemistry, 135(4), 3020-3038.
Charoenphun, N., Cheirsilp, B., Sirinupong, N. & Youravong, W. (2013). Calcium-binding peptides derived from tilapia (Oreochromis niloticus) protein hydrolysate. European Food Research and Technology, 236, 57-63.
Chen, D., Mu, X., Huang, H., Nie, R., Liu, Z. & Zeng, M. (2014). Isolation of a calcium-binding peptide from tilapia scale protein hydrolysate and its calcium bioavailability in rats. Journal of Functional Foods, 6, 575-584.
Chen, K. H., Cheng, W. T., Li, M. J., Yang, D. M. & Lin, S. Y. (2005). Calcification of senile cataractous lens determined by Fourier transform infrared (FTIR) and Raman microspectroscopies. Journal of Microscopy, 219(1), 36-41.
Chen, Q., Guo, L., Du, F., Chen, T., Hou, H. & Li, B. (2017). The chelating peptide (GPAGPHGPPG) derived from Alaska pollock skin enhances calcium, zinc and iron transport in Caco-2 cells. International Journal of Food Science and Technology, 52(5), 1283-1290.
Chibuike, C., Udenigwe., Rotimi, E. & Aluko. (2012). Food Protein-Derived Bioactive Peptides: Production, Processing, and Potential Health Benefits. Journal of Food Science, 77(1), 11-24.
Choi, C., Son, G. M., Cho, Y. J., Chun, S. S., Lim, S. I. & Seok, Y. R. (1992). Purification and characteristics of bromelain from Korean pineapple. J. Korean Agric. Chem. Sot. 35, 23-29.
Church, F. C., Swaisgood, H. E., Porter, D. H. & Catignani, G. L. (1983). Spectrophotometric Assay Using o-Phthaldialdehyde for Determination of Proteolysis in Milk and Isolated Milk Proteins. Journal of Dairy Science, 66(6), 1219-1227.
Coppola, D., Oliviero, M., Vitale, G. A., Lauritano, C., D'Ambra, I., Iannace, S. & Pascale, D. de. (2020). Marine collagen from alternative and sustainable sources: extraction, processing and applications. Mar. Drug, 18(4).
Cui, P., Lin, S., Jin, Z., Zhu, B., Song, L. & Sun, N. (2018). In vitro digestion profile and calcium absorption studies of a sea cucumber ovum derived heptapeptide–calcium complex. Food & Function, 9(9), 4582-4592.
Cui, P., Sun, N., Jiang, P., Wang, D. & Lin, S. (2017). Optimised condition for preparing sea cucumber ovum hydrolysate–calcium complex and its structural analysis. Food Science & Technology, 52(8), 1914-1922.
Davidsson, L., Galan, P., Kastenmayer, P., Cherouvrier, F., Juillerat, M.A., Hercberg, S. & Hurrell, R.F. (1994). Iron bioavailability studied in infants: The influence of phytic acid and ascorbic acid in infant formulas based on soy isolate. Pediatric Research, 36(6), 816-822.
Deyl, Z. & Miksik, I. (2000). Advanced separation methods for collagen parent a-chains, their polymers and fragments. Journal of Chromatography B, 739, 3-31.
Eckert, E., Lu, L., Unsworth, L. D., Chen, L., Xie, J. & Xu, R. (2016). Biophysical and in vitro absorption studies of iron chelating peptide from barley proteins. Journal of Functional Foods, 25, 291-301.
Fahmi, A., Morimure, S., Guo, H. C., Shigematsu, T., Kida, K. & Uemura, Y. (2004). Production of angiotensin I converting enzyme inhibitory peptides from sea bream scales. Process Biochemistry, 39(10), 1195-1200.
Fang, Z., Xu, L., Lin, Y., Cai, X. & Wang, S. The preservative potential of Octopus scraps peptides−Zinc chelate against Staphylococcus aureus: Its fabrication, antibacterial activity and action mode. Food Control, 98, 24-33.
Fleck, C. A. & Simman, R. (2010). Modern collagen wound dressing: Function and purpose. J. Am. Col. Certif. Wound Spec, 2(3), 50-54.
Furtado, M., Chen, L., Chen, Z., Chen, A. & Cui, W. (2022). Development of fish collagen in tissue regeneration and drug delivery. Engineered Regeneration, 3(3), 217-231.
Gelse, K., Pöschl, E. & Aigner, T. (2003). Collagens-structure, function, and biosynthesis. Advanced drug delivery reviews, 55(12), 1531-1546.
Guo, L., Harnedy, P. A., Li, B., Hou, H., Zhang, Z., Zhao, X. & FitzGerald, R. J. (2014). Food protein-derived chelating peptides: Biofunctional ingredients for dietary mineral bioavailability enhancement. Trends in Food Science & Technology, 37(2), 92-105.
Gupta, Sheetal., Jyothi Lakshmi, A. & Prakash, J. (2006). In vitro bioavailability of calcium and iron from selected green leafy vegetables. Journal of the Science of Food and Agriculture, 86(13), 2147-2152.
Hou, H., Wang, S., Zhu, X., Li, Q., Fan, Y., Cheng, D. & Li, B. (2018). A novel calcium-binding peptide from Antarctic krill protein hydrolysates and identification of binding sites of calcium-peptide complex. Food Chemistry, 243, 389-395.
Hou, T., Liu, W., Shi, W., Ma, Z. & He, H. (2017). Desalted duck egg white peptides promote calcium uptake by counteracting the adverse effects of phytic acid. Food Chemistry, 219, 428-435.
Hu, P., Sorensen, C. (1995). Influences of peptide side chains on the metal ion binding site in metal ion-cationized peptides: participation of aromatic rings in metal chelation. J. Am. Soc. Mass Spectr, 6(11), 1079-1085.
Hu, S., Lin, S., Liu, Y., He, X., Zhang, S. & Sun, N. (2022). Exploration of iron-binding mode, digestion Kinetics, and iron absorption behavior of Antarctic Krill–derived heptapeptide–iron complex. Food Research International, 154, 110996.
Huang, C. Y., Wu, C. H., Yang, J. L., Li, Y. H. & Kuo, J. M. (2015). Evaluation of iron-binding activity of collagen peptides prepared from the scales of four cultivated fishes in Taiwan. Journal of Food and Drug Analysis, 23(4), 671-678.
Huang, W., Lan, Y., Liao, W., Lin, L., Liu, G., Xu, H., Xue, J., Guo, B., Cao, Y. & Miao, J. (2021). Preparation, characterization and biological activities of egg white peptides-calcium chelate. LWT, 149, 112035.
Jackson, A. D. & McLaughlin, J. (2009). Digestion and absorption. Surgery (Oxford), 27(6), 231-236.
Jung, W. K., Lee, B. & Kim, S. K. (2007). Fish-bone peptide increases calcium solubility and bioavailability in ovariectomised rats. British Journal of Nutrtion, 95(1), 124-128.
Kozlowski, H., Bal, W., Dyba, M. & Kowalik-Jankowska, T. (1999). Specific structure–stability relations in metallopeptides. Coord. Chem. Rev, 184, 319-346.
Kanost, M. R. & Clarke, T. E. (2005). 4.7 - Proteases. Comprehensive Molecular Insect Science. 4, 247-265.
Kittiphattanabawon, P., Benjakul, S., Visessanguan, W., Nagai, T. & Tanaka, M. (2005). Characterisation of acid-soluble collagen from skin and bone of bigeye snapper (Priacanthus tayenus). Food Chemistry, 89(3), 363-372.
Kristinsson, H. G. & Rasco, B. A. (2010). Fish Protein Hydrolysates: Production, Biochemical, and Functional Properties. Critical Reviews in Food Science and Nutrition, 40(1), 43-81.
Lin, J., Cai, X., Tang, M. & Wang, S. (2015). Preparation and Evaluation of the Chelating Nanocomposite Fabricated with Marine Algae Schizochytrium sp. Protein Hydrolysate and Calcium. Journal of Agricultural and Food Chemistry, 63(44), 9704-9714.
Lin, S., Hu, X., Li, L., Yang, X., Chen, S., Wu, Y. & Yang, S. (2021). Preparation, purification and identification of iron-chelating peptides derived from tilapia (Oreochromis niloticus) skin collagen and characterization of the peptide-iron complexes. LWT, 149, 111796.
Lin, Y., Cai, X., Wu, X., Lin, S. & Wang, S. (2020). Fabrication of snapper fish scales protein hydrolysate-calcium complex and the promotion in calcium cellular uptake. Journal of Functional Foods, 65, 103717.
Liu, G., Sun, S., Guo, B., Miao, B., Luo, Z., Xia, Z., Ying, D., Liu, F., Guo, B., Tang, J., Cao, Y. & Miao, J. (2018). Bioactive peptide isolated from casein phosphopeptides promotes calcium uptake in vitro and in vivo. Food & Function, (4), 2251-2260.
Lou, J., Yao, X., P. Soladoye, O., Zhang, Y. & Fu, Y. (2022). Phosphorylation modification of collagen peptides from fish bone enhances their calcium-chelating and antioxidant activity. LWT, 155, 112978.
Moyer, R., K. Hummer, C. Finn, B. Frei, R.E. Wrolstad. (2002). Antocyanins, phenolics, and antioxidant capacity of diverse small fruits: Vaccinium, Ribes and Rubus J. Agric. Food Chemistry, 50, 519-525.
Murugesh Babu, K. (2013). 5 - The dyeing of silk. Silk, 117-139.
Nagai, T., Izumi, M., &Ishii, M. (2004). Fish scale collagen. Preparation and partial characterization. International Journal of Food Science & Technology, 39, 239-244.
Neurath, H. (1984). Evolution of proteolytic enzymes by hans. Science, 24, 350-357.
Nordin, B. E. (1997). Calcium in health and disease. Food Nutr Agric, 20, 13-26.
Ohgitani, S. & Fujita, T. (2000). Heated oyster shell with algal ingredient (AAACa) decreases urinary oxalate excretion. Journal of Bone & Mineral Metabolism, 18(5), 283-286.
Pasupuleti, V. k., Holmes, C. & Demain, A. L. (2010). Applications of Protein Hydrolysates in Biotechnology. Protein Hydrolysates in Biotechnology. 1-9.
Peng, Z., Hou, H., Zhang, K. & Li, B. (2017). Effect of calcium-binding peptide from Pacific cod (Gadus macrocephalus) bone on calcium bioavailability in rats. Food Chemistry, 221, 373-378.
Qian, J. Y., Chen, W., Zhang, W. M. & Zhang, H. (2009). Adulteration identification of some fungal polysaccharides with SEM, XRD, IR and optical rotation: A primary approach. Carbohydrate Polymers, 78(3), 620-625.
Rattrie, N. W. & Regenstein, J. M. (1977). Action od crude papain on actin and myosin heavy chains isolated from chicken breast muscle. J. Food Sci, 42, 1159-1163.
Sachedev, G. P. & Fruton, J. S. (1970). Secondary enzyme substrate interactions and specificity of pepsin. Biochistry. 9, 4465-4470.
Schrieber, R. & Gareis, H. (2007). Gelatine handbook: Theory and Industrial Practice. Wiley-VCH GmbH & Co., Weinhem.
Soniwala, S., Scinto, K.I., Schott, E.M., Stolarczyk, A.E., Villani, D.A., Dar, Q.-A., Grier, A., Ketz, J.P., Gill, S.R., Mooney, R.A., Prawitt, J. & Zuscik, M.J. (2018). Oral hydrolyzed type 2 collagen protects against the OA of obesity and mitigates obese gut microbiome dysbiosis. Osteoarthritis and cartilage, 26, 173-174.
Stern, J. & Lewis, W. H. P. (1957). The colorimetric estimation of calcium in serum with o-cresolphthalein complexone. Clinica Chimica Acta, 2(6), 576-580.
Subhan, F., Hussain, Z., Tauseef, I., Shehzad, a. & Wahid, F. (2020). A review on recent advances and applications of fish collagen. Crit. Rev. Food Sci. Nutr, 61(6), 1027-1037.
Suetsun, K., Ukeda, H. & Ochi, H. (2000). Isolation and characterization of free radical scavenging activities peptides derived from casein. J Nutr Biochem, 11(3), 128-131.
Sun, N., Cui, P., Jin, Z., Wu, H., Wang, Y. & Lin, S. (2017). Contributions of molecular size, charge distribution, and specific amino acids to the iron-binding capacity of sea cucumber (Stichopus japonicus) ovum hydrolysates. Food Chemistry, 230, 627-636.
Sun, N., Jin, Z., Li, D., Yin, H. & Lin, S. (2017). An Exploration of the Calcium-Binding Mode of Egg White Peptide, Asp-His-Thr-Lys-Glu, and In Vitro Calcium Absorption Studies of Peptide–Calcium Complex. Journal of Agricultural and Food Chemistry, 65(44), 9782-9789.
Sun, N., Wang, Y., Bao, Z., Cui, P., Wang, S. & Lin, S. (2020). Calcium binding to herring egg phosphopeptides: Binding characteristics, conformational structure and intermolecular forces. Food Chemistry, 310, 125867.
Sun, R. Liu, X., Yu, Y., Miao, J., Leng, K. & Gao, H. (2021). Preparation process optimization, structural characterization and in vitro digestion stability analysis of Antarctic krill (Euphausia superba) peptides-zinc chelate. Food Chemistry, 340, 128056.
Tang, N. & H. Skibsted, L. (2016). Calcium binding to amino acids and small glycine peptides in aqueous solution: Toward peptide design for better calcium bioavailability. Journal of Agricultural and Food Chemistry, 64(21), 4376-4389.
Torres-Fuentes, C., Alaiz, M., Vioque, J. (2012). Iron-chelating activity of chickpea protein hydrolysate peptides. Food Chem, 134, 1585-1588.
Wang, J., Zhang, B., Lu, W., Liu, J., Zhang, W., Wang, Y., Ma, M., Cao, X. & Guo, Y. (2020). Cell Proliferation Stimulation Ability and Osteogenic Activity of Low Molecular Weight Peptides Derived from Bovine Gelatin Hydrolysates. Journal of Agricultural and Food Chemistry, 68(29), 7630-7640.
Wang, X., Gao. A., Chen, Y., Zhang, X., Li, S. & Chen, Y. (2017). Preparation of cucumber seed peptide-calcium chelate by liquid state fermentation and its characterization. Food Chemistry, 229, 487-494.
Wang, X., Li, M., Li, M., Mao, X., Zhou, J. & Ren, F. (2011). Preparation and characteristics of yak casein hydrolysate–iron complex. International Journal of Food Science & Technology, 46(8), 1705-1710.
Wang, X., Zhang, Z., Xu, H., Li, X. & Hao, X. (2020). Preparation of sheep bone collagen peptide–calcium chelate using enzymolysis-fermentation methodology and its structural characterization and stability analysis. RSC Advances, 10, 11624-1633.
Wang, Y., Zhang, C. L., Zhang, Q. & Li, P. (2011). Composite electrospun nanomembranes of fish scale collagen peptides/chito-oligosaccharides: antibacterial properties and potential for wound dressing. Int J Nanomedicine, 6, 667-676.
Wang,L., Ding, Y., Zhang, X., Li, Y., Wang, R. & Chen, Z. (2018). Isolation of a novel calcium-binding peptide from wheat germ protein hydrolysates and the prediction for its mechanism of combination. Food Chemistry, 239, 416-426.
Wasserman, R. H. (2004). Vitamin D and the Dual Processes of Intestinal Calcium Absorption. The Journal of Nutrition, 134(11), 3137-3139.
Wu, W., Li, B., Hou, H., Zhang, H. & Zhao, X. (2017). Identification of iron-chelating peptides from Pacific cod skin gelatin and the possible binding mode. Journal of Functional Foods, 35, 418-427.
Wu, C. H., Guo, H. R., Patel, A. K., Singhania, R. R., Chen, Y. A., Kuo, J. M. & Dong, C. D. (2022). Production and characterization of lucrative hypoglycemic collagen-peptide-chromium from tilapia scale. Process Biochemistry, 115, 10-18.
Wu, H., Liu, Z., Zhao, Y. & Zeng, M. (2012). Enzymatic preparation and characterization of iron-chelating peptides from anchovy (Engraulis japonicus) muscle protein. Food Res Int, 48, 435-441.
Wu, W., He, L., Liang, Y., Yue, L., Peng, W., Jin, G. & Ma, M. (2019). Preparation process optimization of pig bone collagen peptide-calcium chelate using response surface methodology and its structural characterization and stability analysis. Food Chemistry, 284, 80-89.
Yoshiko, Y., Murayama Arai, K. & Akahane, K. (1986). Recovery of tryptophan from 25-minute acid hydrolysates of protein. Analytical Biochemistry, 152(2), 245-249.
Yamauchi, K., Goda, T., Takeuchi, N., Einaga, H. & Tanabe, T. (2004). Preparation of collagen/calcium phosphate multilayer sheet using enzymatic mineralization. Biomaterials, 25, 5481-5489.
Yang, X., Yu, X., Yagoub, A. G., Chen, L., Wahia, H., Osae, R. & Zhou, C. (2021). Structure and stability of low molecular weight collagen peptide (prepared from white carp skin) -calcium complex. LWT, 136,2, 110335.
Zhang, H., Zhao, L., Shen, Q., Qi, L., Jiang, S., Guo, Y., Zhang, C. & Richel, A. (2021). Preparation of cattle bone collagen peptides-calcium chelate and its structural characterization and stability. LWT, 144, 111264.
Zhang, Y., Ding, X. & Li, M. (2021). Preparation, characterization and in vitro stability of iron-chelating peptides from mung beans. Food Chemistry, 349, 129101.
Zhang, Z. H., Han, Z., Zeng, X. A. & Wang, M. S. (2017). The preparation of Fe-glycine complexes by a novel method (pulsed electric fields). Food Chemistry, 219, 468-476.
Zhang, Z., Zhou, F., Liu, X. & Zhao, M. (2018). Particulate nanocomposite from oyster (Crassostrea rivularis) hydrolysates via zinc chelation improves zinc solubility and peptide activity. Food Chemistry, 285, 269-277.
Zhao, N., Hu, J., Hou, T., Ma, Z., Wang, C. & He, H. (2014). Effects of desalted duck egg white peptides and their products on calcium absorption in rats. Journal of Functional Foods, 8, 234-242.
Zhou, J., Wang, X., Ai, T., Cheng, X., Gao, H. Y., Teng, G. X. & Mao, X. Y. (2012). Preparation and characterization of β-lactoglobulin hydrolysate-iron complexes. Journal of Dairy Science, 95(8), 4230-4236.