Alting-Mees, M. A., & Short, J. M. (1989). pBluescript II: gene mapping vectors. Nucleic acids research, 17.
Cammas, S., Bear, M. M., Moine, L., Escalup, R., Ponchel, G., Kataoka, K., & Guérin, P. (1999). Polymers of malic acid and 3-alkylmalic acid as synthetic PHAs in the design of biocompatible hydrolyzable devices. International journal of biological macromolecules, 25(1-3), 273-282.
Chen, G. Q. (2009). A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chemical Society Reviews, 38(8), 2434-2446. doi:10.1039/b812677c
Demirbas, A. (2005). Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues. Progress in Energy and Combustion Science, 31(2), 171-192. doi:10.1016/j.pecs.2005.02.002
Escapa, I. F., Garcia, J. L., Buhler, B., Blank, L. M., Prieto, M. A. (2012). The polyhydroxyalkanoate metabolism controls carbon and energy spillage in Pseudomonas putida. Environmental Microbiology, 14(4), 1049-1063. doi:10.1111/j.1462-2920.2011.02684.x
Jambeck, J. R., Geyer, R., Wilcox, C., Siegler, T. R., Perryman, M., Andrady, A., . . . Law, K. L. (2015). Plastic waste inputs from land into the ocean. Science, 347(6223), 768-771. doi:10.1126/science.1260352
Jendrossek, D. (2009). Polyhydroxyalkanoate Granules Are Complex Subcellular Organelles (Carbonosomes). Journal of Bacteriology, 191(10), 3195-3202. doi:10.1128/jb.01723-08
Joseph J. Bozell, L. M., D.C. Elliott, Y. Wang, G.G. Neuenscwander, S.W. Fitzpatrick, R.J. Bilski, J.L. Jarnefeld. (2000). Production of levulinic acid and use as a platform chemical for derived products. Resources, conservation and recycling, 28(3-4), 227-239.
Kesaven Bhubalan, D.-N. R., Hideki Abe, Tadahisa Iwata, Kumar Sudesh. (2010). Improved synthesis of P(3HB-co-3HV-co-3HHx) terpolymers by mutant Cupriavidus necator using the PHA synthase gene of Chromobacterium sp. USM2 with high affinity towards 3HV. Polymer Degradation and Stability, 95(8), 1436-1442. doi:10.1016/j.polymdegradstab.2009.12.018
Khanna, S., & Srivastava, A. K. (2005). Recent advances in microbial polyhydroxyalkanoates. Process Biochemistry, 40(2), 607-619. doi:10.1016/j.procbio.2004.01.053
Kovach, M. E., Elzer, P. H., Hill, D. S., Robertson, G. T., Farris, M. A., Roop, R. M., & Peterson, K. M. (1995). 4 NEW DERIVATIVES OF THE BROAD-HOST-RANGE CLONING VECTOR PBBR1MCS, CARRYING DIFFERENT ANTIBIOTIC-RESISTANCE CASSETTES. Gene, 166(1), 175-176. doi:10.1016/0378-1119(95)00584-1
Lemoigne, M. (1926). Produits de Deshydration et de Polymerisation de L'acide β= Oxybutyrique. Bull. Soc. Chim. Biol, 8, 770-782.
Lin, X., Wu, Zhengmei, Zhang, Chenyuan, Liu, Shijie, Nie, Shuangxi. (2018). Enzymatic pulping of lignocellulosic biomass. Industrial Crops and Products, 120, 16-24. doi:10.1016/j.indcrop.2018.04.033
Luengo, J. M., Garcı́a, B., Sandoval, A., Naharro, G., & Olivera, E. R. (2003). Bioplastics from microorganisms. Current Opinion in Microbiology, 6(3), 251-260. doi:10.1016/s1369-5274(03)00040-7
Matsusaki, H., Abe, H., & Doi, Y. (2000). Biosynthesis and Properties of Poly(3-hydroxybutyrate-co-3-hydroxyalkanoates) by Recombinant Strains ofPseudomonassp. 61-3. Biomacromolecules, 1(1), 17-22. doi:10.1021/bm9900040
Nair, L. S., & Laurencin, C. T. (2007). Biodegradable polymers as biomaterials. Progress in polymer science, 32(8-9), 762-798. doi:10.1016/j.progpolymsci.2007.05.017
Narayan, R. (2011). Carbon footprint of bioplastics using biocarbon content analysis and life-cycle assessment. Mrs Bulletin, 36(9), 716-721. doi:10.1557/mrs.2011.210
Nelms, S. E., Duncan, E. M., Broderick, A. C., Galloway, T. S., Godfrey, M. H., Hamann, M., . . . Godley, B. J. (2016). Plastic and marine turtles: a review and call for research. ICES Journal of Marine Science: Journal du Conseil, 73(2), 165-181. doi:10.1093/icesjms/fsv165
Nie, S., Zhang, C., Zhang, Q., Zhang, K., Zhang, Y., Tao, P., & Wang, S. (2018). Enzymatic and cold alkaline pretreatments of sugarcane bagasse pulp to produce cellulose nanofibrils using a mechanical method. Industrial Crops and Products, 124, 435-441. doi:10.1016/j.indcrop.2018.08.033
Nobes, G. A. R., Maysinger, D., & Marchessault, R. H. (1998). Polyhydroxyalkanoates: materials for delivery systems. Drug Delivery, 5(3), 167-177.
North, E. J., & Halden, R. U. (2013). Plastics and environmental health: the road ahead. Rev Environ Health, 28(1), 1-8. doi:10.1515/reveh-2012-0030
Pakalapati, H., Chang, C. K., Show, P. L., Arumugasamy, S. K., Lan, J. C. W. (2018). Development of polyhydroxyalkanoates production from waste feedstocks and applications. Journal of Bioscience and Bioengineering, 126(3), 282-292. doi:10.1016/j.jbiosc.2018.03.016
Qi, Q., Steinbüchel, A., & Rehm, B. H. (1998). Metabolic routing towards polyhydroxyalkanoic acid synthesis in recombinant Escherichia coli (fadR): inhibition of fatty acid β-oxidation by acrylic acid. FEMS microbiology letters, 167(1), 89-94.
Ricke, S. C. (2003). Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poultry science, 82(4), 632-639.
Schlegel, H. G., Gottschalk, G., & Von Bartha, R. (1961). Formation and utilization of poly-β-hydroxybutyric acid by Knallgas bacteria (Hydrogenomonas). Nature, 191, 4787.
Sendil, D., Gürsel, I., Wise, D. L., & Hasırcı, V. (1999). Antibiotic release from biodegradable PHBV microparticles. Journal of Controlled Release, 59(2), 207-217.
Simon, R. U. P. A. P., Priefer, U., & Pühler, A. (1983). A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Bio/technology, 1(9), 784.
Singh, N., Hui, D., Singh, R., Ahuja, I. P. S., Feo, L., & Fraternali, F. (2017). Recycling of plastic solid waste: A state of art review and future applications. Composites Part B-Engineering, 115, 409-422. doi:10.1016/j.compositesb.2016.09.013
Slawomir Ciesielski, J., Nipon Pisutpaisal. (2015). Plant oils as promising substrates for polyhydroxyalkanoates production. Journal of Cleaner Production, 106, 408-421. doi:10.1016/j.jclepro.2014.09.040
Steinbuchel, A. (2001). Perspectives for biotechnological production and utilization of biopolymers: Metabolic engineering of polyhydroxyalkanoate biosynthesis pathways as a successful example. Macromolecular Bioscience, 1(1), 1-24.
Sudesh, K., Abe, H., & Doi, Y. (2000). Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Progress in Polymer Science, 25(10), 1503-1555. doi:10.1016/s0079-6700(00)00035-6
Tan, G. Y. A., Chen, C. L., Li, L., Ge, L., Wang, L., Razaad, I. M. N., . . . Wang, J. Y. (2014). Start a Research on Biopolymer Polyhydroxyalkanoate (PHA): A Review. Polymers, 6(3), 706-754. doi:10.3390/polym6030706
Tian, J., Sinskey, A. J., Stubbe, J. (2005). Detection of intermediates from the polymerization reaction catalyzed by a D302A mutant of class III polyhydroxyalkanoate (PHA) synthase. Biochemistry, 44(5), 1495-1503. doi:10.1021/bi047734z
Titz, M., Kettl, K.-H., Shahzad, K., Koller, M., Schnitzer, H., & Narodoslawsky, M. (2012). Process optimization for efficient biomediated PHA production from animal-based waste streams. Clean Technologies and Environmental Policy, 14(3), 495-503. doi:10.1007/s10098-012-0464-7
Wei, R., Zimmermann, W. (2017). Microbial enzymes for the recycling of recalcitrant petroleum-based plastics: how far are we? Microbial Biotechnology, 10(6), 1308-1322. doi:10.1111/1751-7915.12710
Wiggam, M. I., O'kane, M. J., Harper, R., Atkinson, A. B., Hadden, D. R., Trimble, E. R., & Bell, P. M. (1997). Treatment of diabetic ketoacidosis using normalization of blood 3-hydroxybutyrate concentration as the endpoint of emergency management: a randomized controlled study. Diabetes care, 20(9), 1347-1352.
Xue, S. J., Jiang, H., Chen, L., Ge, N., Liu, G. L., Hu, Z., . . . Chi, Z. (2019). Over-expression of Vitreoscilla hemoglobin (VHb) and flavohemoglobin (FHb) genes greatly enhances pullulan production. Int J Biol Macromol, 132, 701-709. doi:10.1016/j.ijbiomac.2019.04.007
Zhang, J., Zhang, B., Zhang, J., Lin, L., Liu, S., & Ouyang, P. (2010). Effect of phosphoric acid pretreatment on enzymatic hydrolysis of microcrystalline cellulose. Biotechnol Adv, 28(5), 613-619. doi:10.1016/j.biotechadv.2010.05.010
Zhang X., F. M., Jones G. O., & Waymouth R. M. (2018). Catalysis as an Enabling Science for Sustainable Polymers. Chem Rev, 118(2), 839-885. doi:10.1021/acs.chemrev.7b00329
Zinn, M., Witholt, B., & Egli, T. (2001). Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Advanced drug delivery reviews, 53(1), 5-11.
郭丁傳 (2017)。野生菌株Comamonas sp. L8U 生和成均質聚合物poly(3-hydroxyvalerate) 的研究。國立高雄海洋科技大學海洋生物技術系暨研究所碩士論文,台灣高雄。劉崇賢 (2017)。野生菌株Pseudomonas putida H9生合成均質聚合物poly(3-hydroxyhexanoate) 及PHA合成酶基質專一性之研究。國立高雄海洋科技大學海洋生物技術系暨研究所碩士論文,台灣高雄。王琪 (2018)。Comamonas sp. L8U轉換果糖酸為3-羥基戊酸最佳化條件及產量提升之研究。國立高雄科技大學 (楠梓/旗津校區) 海洋生物技術系暨研究所碩士論文,台灣高雄。楊朝森 (2008)。一種共聚酯與六種金屬陶瓷牙冠之檢測分析。國立中山大學材料科學研究所碩士論文。台灣屏東。